跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/04 03:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉元豪
研究生(外文):Yuan-Hau, Yeh
論文名稱:視訊編碼器之記憶體縮減與壓縮技術
論文名稱(外文):Memory Reduction and Compression Techniques for Video Codec
指導教授:李鎮宜
指導教授(外文):Advisor:Prof. Chen-Yi Lee
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2000
畢業學年度:89
語文別:英文
論文頁數:99
中文關鍵詞:記憶體壓縮技術視訊編碼器小波編碼貼圖壓縮向量量化
外文關鍵詞:memorycompression techniquevideo codecwavelet codingtexture compressionvector quantization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:1
在此論文中,我們提出了多種記憶體最佳化演算法和實際可行的超大型積體電路架構可應用於系統單晶片多媒體系統。在單晶片系統設計中,許多需要大量簡單運算和資料傳輸的演算法通常實現在陣列處理器。針對這點,我們發展了一套系統化設計方法,可針對在有限的計算能力、晶片面積、和頻寬的限制之下,對於記憶體做最佳化。另外,影像壓縮在單晶片多媒體系統中扮演非常重要的角色,因為大量的視訊及影像資料如果不被壓縮的話,將會耗掉大部分的記憶體和頻寬資源。我們也發展了三種影像和貼圖壓縮演算法,可滿足不同的壓縮比和影像品質需求。
此論文主要分成三部分。第一部份我們針對完全搜尋型區塊比對演算法,提出了二種有效率的超大型積體電路架構以及記憶體最佳化演算法。從搜尋區域資料流分析中,導出systolic array 和semi-systolic array 架構。經由巧妙安排記憶體的結構,非但頻寬可被最小化,而且處理單元(processor element)的效率提升。另外,控制器結構非常簡單直接,簡化了設計複雜度且能符合需求。在另一方面,經由探討資料的相關圖(dependency graph),我們集中注意力在降低內部緩衝區大小在頻寬的限制下。我們發展的系統化設計方法可提供降低內部緩衝區非效率的使用。
在第二部分,我們提出了新穎的密碼簿最佳化演算法和貼圖壓縮演算法。向量量化演算法的優點在於解碼非常常簡單,但是在效能方面卻受到密碼簿設計很大的影響。大部分向量量化壓縮皆採用LBG法來產生密碼簿,但是LBG法仍不能產生最佳解。我們提出一種以基因演算法為基礎的密碼簿產生方式,可比LBG法提升影像品質0.01~0.14分貝。但是向量量化壓縮法的實用度仍受限於密碼簿大小、訓練集內容、以及較差的影像品質。所以我們提出一種只需要非常小的密碼簿的貼圖壓縮方法,而且密碼簿產生方式是依據被壓縮影像內容,而非訓練集。這個演算法非常適合於高品質的需求而且解壓縮非常簡單。
在第三部分,我們提出一種增進傳統小波編碼效能的演算法。這種演算法根據位元率-失真分佈可以對單一或一群組的小波係數產生最佳的位元平面擷取點。實驗結果證明在測試影像 ”Lena” 中,我們所提出的演算法比EZW高出1.09~1.1分貝,比SPIHT高出0.22~0.25分貝,比RDE高出0.02~0.35分貝,在位元率為0.125~1.0的情況下。
In this dissertation, we have proposed various memory-optimization algorithms and implemented practical VLSI architectures for SOC multimedia systems. In SOCs, the computation-intensive and memory-intensive algorithms are usually mapped to array processors. We have developed a systematic design procedure to optimize the on-chip memory size under computing power, area or I/O bandwidth constraints. Image compression algorithms are very important for SOC multimedia systems, because the huge amount of video and image data occupies very high memory size and bandwidth if the data has not been compressed. We have developed various image and texture compression algorithms, which can be used for different performance and compression ratio requirements.
This dissertation is divided into three parts. The first part presents two efficient VLSI architectures and memory size optimization are proposed. Starting from an overlapped data flow of search area, both systolic array and semi-systolic array architectural solutions are derived. By means of exploiting stream memory banks, not only I/O bandwidth can be minimized but also processor element efficiency can be improved. In addition, the controller structure for both solutions are very straightforward, making them very suitable for VLSI implementation to meet computational requirements. On the other hand, by exploring the DG (dependency graph), we focus in the problem of reducing the internal buffer size under minimal I/O bandwidth constraint, this may offer the guideline on reducing redundant internal buffer and then achieve cost-effective VLSI architectures.
In the second part, a novel codebook optimization algorithm and a novel texture compression algorithm are proposed. VQ-based algorithms are one of the popular types of compression algorithms, which are very simple in decoding. The performance of VQ-based algorithms is greatly affected by the codebooks. Most VQ-based algorithms incorporate the LBG algorithm as the codebook generation scheme. But the LBG algorithm only finds the sub-optimal solution for a given training set. We have proposed a genetic-based codebook generation algorithm, which outperforms the LBG algorithm with 0.01~0.14 dB in PSNR. The vector-quantization solutions of the image compression are usually limited in the high cost of the codebook size, training sets, and image quality for high-quality applications. This dissertation proposes an algorithm, where the small codebook entries are embedded into the data of compressed image block according to the context of this image block. In addition, an optimization procedure of finding optimal codebook entries based on genetic algorithms is proposed. The proposed algorithm is suitable for high-quality application and the cost of the decoder is very low and can effectively reduce the memory bandwidth for multimedia systems.
In the third part, a novel wavelet image coder for quality improvement is presented. The proposal achieves better bit-plane truncation of wavelet coefficients by exploiting optimal truncation point for each group of coefficients in different levels depending on rate-distortion distribution. Simulation results show our proposed algorithms outperform EZW, SPIHT, and RDE by 1.09~1.1 dB, 0.22~0.25 dB, and 0.02~0.35 dB respectively at 0.125~1 bpp for image “Lena”.
Cover
Contents
CHAPTER ONE:INTRODUCTION
1.1 BACKGROUND
1.2 MEMORY AND BANDWIDTH OPTIMIZATION
1.3 TEXTURE COMPRESSION
1.4 THESIS ORGANIZATION AND CONTRIBUTION
CHAPTER TWO:SYSTOLIC ARCHITECTURE WITH MEMORY SIZE REDUCTION
2.1 INTRODUCTION
2.2 SYSTOLIC ARRAY DESIGN METHODOLOGY
2.3 FULL-SEARCH BLOCK MATCHING ALGORITHMS
2.4 MEMORY SIZE REDUCTION
2.5 SIMULATION RESULTS AND PERFORMANCE EVALUATION
CHAPTER THREE:CODEBOOK OPTIMIZATION FOR VQ-BASED ALGORITHMS
3.1 INTRODUCTION
3.2 BACKGROUND
3.3 CODEBOOK OPTIMIZATION
3.4 PROPOSED TEXTURE COMPRESSION ALGORITHM
CHAPTER FOUR:WAVELET-BASED CODING WITH OPTIMAL BIT-PLANE TRUNCATION
4.1 INTRODUCTION
4.2 BACKGROUND
4.3 OPTIMAL BIT-PLANE TRUNCATION
4.4 PROPOSED DECODING FLOW
CHAPTER FIVE:CONCLUSIONS AND FUTURE WORKS
5.1 CONCLUDING REMARKS
5.2 FUTURE WORKS
REFERENCES
[1] P. R. Panda, N. Dutt, and A. Nicolau, Memory Issues in Embedded Systems-On-Chip, Kluwer Academic Publishers, 1999.
[2] Y. Zorian, E. J. Marinissen, and S. Dey, “Testing Embedded-Core-Based System Chips,” IEEE Computer Magazine, pp. 42-50, June 1999.
[3] Mark Birnbaum and Howard Sachs, “How VSIA Answers the SOC Dilemma,” IEEE Computer Magazine, pp. 52-60, June 1999.
[4] Masakazu Suzuoki et al., “A Microprocessor with a 128-Bit CPU, Ten Floating-Point MAC’s, Four Floating-Point Dividers, and an MPEG-2 Decoder,” IEEE J. Solid State Circuits, vol. 34, no.11, pp.1608-1618.
[5] Michael Deering, “Geometry Compression,” Proceedings of SIGGRAPH 1995.
[6] Hajime Kubosawa et al., “A 2.5-GFLOPS, 6.5 Million Polygons per Second, Four-Way VLIW Geometry Processor with SIMD Instructions and a Software Bypass Mechanism,” IEEE J. Solid State Circuits, vol. 34, no.11, pp.1619-1626.
[7] DirectX 7.0 Standard, Microsoft Corporation.
[8] Mark Segal and Kurt Akeley, The OpenGL Graphics System: A Specification (Version 1.2), Mar. 1998.
[9] I. Ahmad and C. Y. R. Chen, “Post-processor for data path synthesis using multiport memories,” Proc. Int. Conf. Comput.-Aid. Des., pp.276-279, Nov. 1991.
[10] M. Balakrishnan et al., “Allocation of multiport memories in data path synthesis,” IEEE Trans. Comput.-Aided Design, vol. 7, pp.536-540, Apr. 1988.
[11] C.-J. Tseng and D. Siewiorek, “Automated synthesis of data paths in digital systems,” IEEE Trans. Comput.-Aided Design, vol. CAD-5, pp.379-395, July 1986.
[12] L. Stok and J. Jess, “Foreground memory management in data path synthesis,” Int. J. Circ. Theory Applicat., vol. 20, pp.235-255, 1922.
[13] A. Aho, R. Sethi, and J. D. Ullman, Compilers: Principle, Techniques and Tools. Addison-Wesley, 1986.
[14] K. K. Parhi, “Systematic synthesis of DSP data format converters using lift time analysis and forward-backward register allocation,” IEEE Trans. on Circuits and Systems — II, vol. 39, no.7, pp. 423-440, July 1992.
[15] K. K. Parhi, VLSI Digital Signal Processing Systems. John Wiley & Sons, Inc.
[16] F. Catthoor, M. van Swaaij, J. Rosseel, and H. De Man, “Array design methodologies for real-time signal processing in the Cathedral IV synthesis environment,” Algorithms and Parallel VLSI Architectures II, pp. 211-221, 1992.
[17] F. Balasa, F. Catthoor, and H. De Man, “Background Memory Area Estimation for Multidimensional Signal Processing Systems,” IEEE Trans. on VLSI Systems, vol. 3, no. 2, pp.157-171, June 1995.
[18] H. T. Kung, “Why systolic architectures ?,” IEEE Computer Magazine, vol. 15, pp. 37-45, Jan. 1982.
[19] S. Y. Kung, VLSI Array Processors. Prentice Hall, 1988.
[20] I. Daubechies, “The wavelet transform, time-frequency localization and signal analysis,” IEEE Trans. Informat. Theory, vol. 36, pp. 961-1005, Sept. 1990.
[21] S. Mallat, “A theory for multiresolution signal decomposition: The wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, pp.674-693, July 1989.
[22] Y. Shoham and A. Gersho, “Efficient Bit Allocation for an Arbitrary Set of Quantizers,” IEEE Trans. ASSP, pp.31-42, Jan. 1989.
[23] L. K. Komarek and P. Pirsch, “Array Architectures for Block Matching Algorithms,” IEEE Trans. on Circuits and Systems, vol. 36, no. 10, pp.1301-1308, Oct. 1989.
[24] R.C. Kim and S.U. Lee, “A VLSI Architecture for a Pel Recursive Motion Estimation Algorithm,” IEEE Trans. on Circuits and Systems, vol. 36, no. 10, pp. 1291-1300, Oct. 1989.
[25] L. De Vos and M. Stegherr, ”Parameterizable VLSI Architectures for the Full-Search Block Matching Algorithm,” IEEE Trans. on Circuits and Systems, vol. 36, no. 10, pp. 1309-1316, Oct. 1989.
[26] K.M. Yang, M.T. Sun, and L. Wu, ”A Family of VLSI Designs for the Motion Compensated Block-Matching Algorithm,” IEEE Trans. on Circuits and Systems, vol. 36, no. 10, pp. 1317-1325, Oct. 1989.
[27] C.H. Hsieh and T.P. Lin, ”VLSI Architecture for Block-Matching Motion Estimation Algorithm,” IEEE Trans. on Circuits and Systems for Video Technology, vol. 2, no. 2, pp. 169-175, June 1992.
[28] S.I. Uramoto, A. Takabatake, M. Suzuki, H. Sakurai, and M. Yoshimoto, ”A Half-Pel Precision Motion Estimation Processor For NTSC-Resolution Video,” IEEE 1993 Custom Integrated Circuits Conference, San Diego, CA, pp. 11.2.1-11.2.4, May 9-12 1993.
[29] J. Baek, S. Nam, M. Lee, C. Oh, and K. Hwang, ”A Fast Array Architecture for Block Matching Algorithm,” Proc. of ISCAS''94, London, pp. 4.211-4.214, May 30-June 2 1994.
[30] C.L. Wang, K.M. Chen, and J.M. Hsiung, ”A High-Throughput and Flexible VLSI Architecture for Motion Estimation,” Proc. of ICASSP''95, Detroit, pp. 3295-3298, May 8-12 1995.
[31] S. Chang, J.H. Hwang, and C.W. Jen, ”Scalable Array Architecture Design for Full Search Block Matching,” IEEE Trans. on CAS for Video Technology, vol. 5, no. 4, pp. 332-343, Aug. 1995.
[32] H. Yeo and Y.H. Hu, ”A Novel Modular Systolic Array Architecture for Full-Search Block Matching Motion Estimation,” IEEE Trans. on CAS for Video Technology, vol. 5, no. 5, pp. 407 — 416, Oct. 1995.
[33] L. De Vos and M. Schobinger, ”VLSI Architecture for a Flexible Block Matching Processor,” IEEE Trans. on CAS for Video Technology, vol. 5, no. 5, pp. 417 — 428, Oct. 1995.
[34] K. Ishihara, S. Masuda, S. Hattori, H. Nishikawa, Y. Ajioka, T. Yamada, H. Amishiro, and M. Yoshimoto, ”A Half-Pel Precision MPEG2 Motion Estimation Processor with Concurrent Three-Vector Search,” Proc. of ISSCC''95, pp. 288-289, Feb. 1995.
[35] G.L. Tzeng and C.Y. Lee, ”An Efficient Memory Architecture for Motion Estimation Processor Design,” Proc. of ISCAS''95, Seattle, April 29 - May 3, 1995.
[36] M.C. Lu and C.Y. Lee, “Semi-Systolic Array Based Motion Estimation Processor Design,” Proc. of ICASSP''95, Detroit, May 8-12, 1995.
[37] International Organization for Standardization Coding of Moving Pictures and Associated Audio, ISO/IEC JTC1/SC29/WG11/N702, March 25, 1994.
[38] S3TCTM DirectX 6.0 Standard Texture Compression.
[39] FXT1TM Texture Compression Technology White Paper, 3dfx Interactive.
[40] Robert M. Gray, “Vector Quantization,” IEEE ASSP Magazine, pp. 4-29, April 1984.
[41] N. M. Nasrabadi and R. A. King “Image Coding Using Vector Quantization: A Review,” IEEE Trans. on Comm., Vol. 36, No. 8, pp. 957-971, Aug. 1988.
[42] P. C. Cosman, et al., “Vector Quantization of Image Subbands: A Survey,” IEEE Trans. on Image Processing, Vol. 5, No. 2, pp. 202-225, Feb. 1996.
[43] C. F. Barnes, et al., “Advances in Residual Vector Quantization: A Review,” IEEE Trans. on Image Processing, Vol. 5, No. 2, pp. 226-262, Feb. 1996.
[44] Y. Linde, et al., “An Algorithm for Vector Quantizer Design,” IEEE Trans. on Comm., COM-28, pp. 84-95, Jan. 1980.
[45] Gen and Cheng, Genetic Algorithms & Engineering Design, Wiley Interscience, 1997.
[46] Michalewicz, Z., Genetic Algorithm + Data Structure = Evolution Programs,3rd., Springer-Verlag, New York, 1996.
[47] K. F. Man et al., Genetic Algorithms for Control and Signal Processing, Springer-Verlag, New York, 1997.
[48] J. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, 1975.
[49] D. Fogel, “An Introduction to Simulated Evolutionary Optimization,” IEEE Trans. on Neural Networks, vol. 5, pp. 3-14, 1994.
[50] J. Backer, “Adaptive Selection Methods for Genetic Algorithms,” Proc. ISCGA, pp. 100-111.
[51] Y. Zheng, Julstorm, B.A., W. Cheng, “Design of vector quantization codebooks using a genetic algorithm,” IEEE ICEC’97, pp. 525-529.
[52] L. Baker and R. M. Gray, “Differential Vector Quantization of Achromatic Imagery,” Proc. IPCS, March 1983.
[53] M. Hang and B. G. Haskell, “Interpolative Vector Quantization of Color Images,” IEEE Trans. on Comm., vol. 36, no. 4, pp. 465-470, April 1988.
[54] Jerome M. Shapiro, “Embedded Image Coding Using Zerotrees of Wavelet Coefficients,” IEEE Trans. on Signal Processing, Dec. 1993.
[55] A. Said and W. A. Pearlman, “A New, Fast, and Efficient Image Codec Based on Set Partitioning in Hierarchical Trees,” IEEE Trans. on CSVT, June 1996.
[56] Jin Li, “An Embedded Still Image Coder with Rate-Distortion Optimization,” IEEE Trans. on Image Processing, July 1999.
[57] JPEG2000 Verification Model 5.0 (Technical Description), ISO/IEC JTC1/SC29/WG1 N1420, 1999.
[58] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete Cosine Transform,” IEEE Trans. Comput., vol. C-23, pp. 88-93, Jan. 1974.
[59] P. Pirsch et al., “VLSI architecture for video compression,” IEEE Trans. on VLSI Systems, pp. 220-246, Feb. 1995.
[60] G. K. Wallace, “The JPEG still picture compression standard,” Communications of the ACM, 34(4): 30-44, April 1991.
[61] S. G. Mallat and F. Falzon, “Analysis of Low Bit Rate Image Transform Coding,” IEEE Trans. on Signal Processing, April 1998.
[62] MPEG-4 Video Verification Model 5.0, ISO/IEC JTC1/SC29/WG11 N1469, 1996.
[63] Z. Xiong, K. Ramchandran and M. T. Orchard, “Space-Frequency Quantization for Wavelet Image Coding,” IEEE Trans. on Image Processing, May 1997.
[64] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design of Embedded Systems, Prentice Hall, 1994.
[65] E. Musoll, T. Lang, and J. Cortadella, “Exploiting the locality of memory references to reduce the address bus energy,” International Symposium on Low Power Electronics and Design, pp. 202-207, August 1997.
[66] L. Benini, et al., “Address bus encoding techniques for system-level power optimization,” Design, Automation and Test in Europe, Feb. 1998.
[67] H. Tomiyama, et al., “Instruction scheduling for power reduction in processor-based system design,” Design, Automation and Test in Europe, Feb. 1998.
[68] S. L. Coumeri and D. E. Thomas, Jr., “Memory Modeling for System Synthesis,” IEEE Trans. on VLSI systems, vol. 8, no. 3, pp. 327-334, June 2000.
[69] Alan Watt, 3D Computer Graphics 3rd, Addison-Wesley Publishing Ltd, 2000.
[70] Chang-Wen Chen and Ya-Qin Zhang, editors, Visual Information Representation, Communication, and Image Processing, Marcel Dekker, Inc. 1999.
[71] A. N. Netravali and B. G. Haskell, Digital Pictures 2nd, Plenum Press, 1995.
[72] Y.-H. Yeh and C.-Y. Lee “Scalable VLSI Architectures for Full-Search Block Matching Algorithms,” in IEEE ICIP, pp. 1035-1038, 1996.
[73] Y.-H. Yeh and C.-Y. Lee, “Buffer Size Optimization for Blocking Matching Algorithms,” IEEE ASSAP, pp. 76-85, 1997.
[74] Bor-Cheng Shih, Y.-H. Yeh, and C.-Y. Lee, “An Area Efficient Architecture for 3D Graphics Shading,” in IEEE ICCE, pp. 462-464, 1998.
[75] Y.-H. Yeh and C.-Y. Lee, “A New Anti-Aliasing Algorithm For Computer Graphics Images,” in IEEE ICIP, 1999.
[76] Y.-H. Yeh and C.-Y. Lee, “Cost-Effective VLSI Architectures and Buffer Size Optimization for Full-Search Block Matching Algorithms,” IEEE Trans. on VLSI Systems, vol. 7, no. 3, Sep. 1999.
[77] Yuan-Hau Yeh, Shih-Chou Juan, and Chen-Yi Lee, “Wavelet-Based Coding with Optimal Bit-plane Truncation,” Submitted to IEEE signal processing letters.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top