跳到主要內容

臺灣博碩士論文加值系統

(34.204.176.71) 您好!臺灣時間:2024/11/07 18:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅維真
研究生(外文):Wei - Chen Luo
論文名稱:以NMR探討2-異丙基酚﹑乙醯苯胺及一些具有立體障礙的醇類經由氫鍵所產生的自結合現象
論文名稱(外文):NMR study of hydrogen bonding association of 2-isopropylphenol, acetanilide and some sterically hindered alcohols
指導教授:陳振興陳振興引用關係
指導教授(外文):Jenn-Shing Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:150
中文關鍵詞:雙體結合單體位移雙體位移圖解法
外文關鍵詞:DimerizationMonomer ShiftDimer ShiftGraphical Method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本論文主要利用高解析度核磁共振光譜儀偵測稀釋溶液OH或NH之觀測位移 。這些隨濃度變化的化學位移的數據經由圖解法處理後可以分別求出單體位移 ,雙體位移 與雙體結合常數K。另外,利用雙體結合常數K隨溫度變化的關係,藉由van’t Hoff理論作圖可以求得各系統之標準結合熵( )和標準結合焓( )。
研究內容分為三部分。第一部份為:探討2-異丙基酚 (2-isopropylphenol,簡稱2-IPP) 在四氯化碳 (carbon tetrachloride)、丙酮-d6 ([2H6]acetone) 、氰甲烷-d3 ([2H3]acetonitrile) 以及二甲亞楓-d6 ([2H6]dimethylsulfoxide,DMSO-d6)等溶劑中經由氫鍵所形成的分子自結合 (molecular self-association) 行為。實驗結果顯示,2-IPP在丙酮-d6,氰甲烷-d3及DMSO-d6等溶劑中OH的化學位移不會隨濃度的增加而變化,此結果與在四氯化碳中所觀察到的現象相反。我們亦發現2-IPP在四氯化碳這類非極性溶劑中自結合較為重要。相反的在丙酮-d6﹑氰甲烷-d3及DMSO-d6等極性溶劑中反而溶質與溶劑間的異結合較為重要。
第二部分為:探討乙醯苯胺 (acetanilide) 經由N—H與 O=C所形成的氫鍵而造成的分子自結合(雙體)現象。所採用的溶劑有: 氯仿-d1 ([2H1]chloroform) 、丙酮-d6 ([2H6]acetone) 、氰甲烷-d3 ([2H3]acetonitrile) 及二甲亞楓-d6 ([2H6]dimethylsulfoxide,DMSO-d6)等四種溶劑。此四種系統分別在268至348 K溫度下進行實驗。經由NMR偵測乙醯苯胺在這些溶液中NH之觀測位移 。實驗結果顯示在此四個系統中單體位移、雙體位移和雙體結合常數K皆隨溫度的升高而減少。究其原因為乙醯苯胺在這些系統的雙體自結合過程皆為放熱反應。
第三部分為:討論三種具有立體障礙的脂肪族醇類 (aliphatic alcohols),在非極性溶劑中經由氫鍵所形成的分子自結合(雙體)現象。所採用的系統有:2,4-二甲基-3-戊醇(2,4-dimethyl-3-pentanol) 或 3-甲基-3-戊醇 (3-methyl-3-pentanol)在環己烷-d6 ([2H12]cyclohexane)、四氯化碳與氯仿-d1 ([2H1]chloroform)溶液中等六個系統,以及2,3,4-三甲基-3-戊醇 (2,3,4-trimethyl-3-pentanol)在四氯化碳溶液中共七個系統。結果顯示標準結合焓( )的絕對值隨主鏈取代基的增加而下降,亦即3-甲基-3-戊醇>2,4-二甲基-3-戊醇>2,3,4-三甲基-3-戊醇。2,4-二甲基-3-戊醇與2,3,4-三甲基-3-戊醇在溶液中的的雙體結合常數K,標準結合焓以及標準結合焓的絕對值隨介電常數的增加而下降,亦即氯仿-d1<四氯化碳<環己烷-d12。
Abstract
The self-association (dimerization) due to hydrogen bonding for some alcohols with bulky side chains, 2-isopropylphenol and acetanilide were investigated by nuclear magnetic resonance spectroscopy. The dilution shift data of OH or NH proton were measured and employed to determine the monomer shift, dimer shift and dimerization constant with the help of a graphic method. The enthalpy and entropy of dimerization were determined via a van’t Hoff plot from the temperature variation of the dimerization constant.
This study includes three parts. Chapter 3 deals with the self-association of 2-isopropylphenol through hydrogen bonding in carbon tetrachloride, [2H6]acetone, [2H3]acetonitrile and [2H6]dimethyl sulphoxide. The proton dilution shifts of the hydroxyl group of 2-isopropylphenol in [2H6]acetone, [2H3]acetonitrile and [2H6]dimethyl sulphoxide do not change with increasing concentration, as opposed to in carbon tetrachloride From the concentration variation of the shift data, we conclude that the self-association of 2-isopropylphenol is more important in inert solvents while the hetero-association is more important in polar solvents.
Chapter 4 deals with the study of the self-association of acetanilide through hydrogen bonding between N—H and O=C in the solvents [2H1]chloroform, [2H6]acetone, [2H3]acetonitrile and [2H6]dimethyl sulphoxide. We observed that the monomer and dimer shifts and dimerization constants all decrease with temperature in all these systems.
Chapter 5 deals with the self-association (dimerization) due to hydrogen bonding for some alcohols with bulky side chains. The systems studied include 2,4-dimethyl-3-pentanol or 3-methyl-3-pentanol in [2H12]cyclohexane, carbon tetrachloride or [2H1]chloroform, and 2,3,4-trimethyl-3-pentanol in carbon tetrachloride. Experimental results indicate that the value of of 3-methyl-3-pentanol, 2,4-dimethyl-3-pentanol and 2,3,4-trimethyl-3-pentanol in carbon tetrachloride decrease when increasing the aliphatic substituents on the pentanol group. The dimerization constants, the values of - and - of the self-association of 3-methyl-3-pentanol and 2,4-dimethyl-3-pentanol reduce with increasing dielectric constants of the solvent, that is, [2H12]cyclohexane > carbon tetrachloride > [2H1]chloroform.
目錄
中文摘要
英文摘要
志謝
目錄
表目錄
圖目錄
第零章研究目的與內容
第一章緒論
1-1氬健簡介
1-1-1氬鍵在生化上所扮演的角色
1-2-2一些量測氬鍵的方法
1-1-3氬健位移(hydrogen-bond shift)
1-1-4經由氬鍵所產生的分子間異結合
1-2 核磁共振簡介
1-2-1基本原理
1-2-2 交換效應
1-3參考文獻
第二章圖解法
1-1圖解法
1-2參考文獻
第三章 以NMR探討2一異丙基酚在四氯化碳、丙酮、二甲亞楓及氰甲烷等溶液中的自結合現象
3-1 緣起
3-2實驗
3-2-1儀器設備
3-2-2藥品
3-2-3實驗步驟
3-3結果
3-4討論
3-5 結論
3-6 參考文獻
第四章 以NMR 探討乙醞苯胺在氯仿、丙酮、氰甲烷及二甲亞楓答溶液中的自結合現象
4-1緣起
4-2實驗
4-2-l 儀器設備
4-2-2藥品
4-2-3實驗步驟
4-3結果與討論
4-4 結論
4-5 參考文獻
第五章 一些具有立體障礙的醇其自結合之NM R研究
5-1 緣起
5-2 實驗
5-2-1儀器設備
5-2-2藥品
5-2-3 實驗步驟
5-3 結果
5-4討論
5-4-l 相關研究的比較
5-4-2 溫度效應
5-4-3立體障疑對雙體結合的影響
5-4-3溶劑效應
5-4-5 2,4二甲基上戊醇單體位移受溫度影響大之探討
5-5 結論118
5-6參考文獻
第六章研究總結論
1-3 參考文獻
1. Cantor, C. R.; Schimmel, P. R. Biophysical Chemistry; Par I: Conformation of Biological Macromolecules. Chap 5. Freeman & Co, San Francisco, 1980, Chapter 5, pp 279-288.
2. Creighton, T. E. Proteins; Freeman & Co, New York, 1984, Chapter 4, pp 133-158.
3. Watson, J. D. The Importance of Weak Interaction. Molecular Biology of The Gene.; Benjamin, New York, 1965, Chapter 4, pp. 102-140.
4. Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Nat. Acad. Sci. USA 1951, 37, 205.
5.Errera, J.; Mollet, P. Nature 1936, 138, 882.
6.Griffiths, V. S.; Socrates, G. J. Mol. Spectrosc. 1966, 21, 302.
7.Patterson, L. K.; Hammaker, R. M. Spectrochim. Acta 1967, 23A, 2333.
8.Iwahashi, M.; Hayashi, Y.; Hachiya, N.; Matsuzawa, H.; Kobayashi, H. J. Chem. Soc., Faraday Trans. 1993, 89, 707.
9.Chen, J. S.; Shiao, J. C. J. Chem. Soc., Faraday Trans. 1994, 90, 429.
10.Chen, J. S.; Shiao, J. C.; Fang, C. Y. J. Chin. Chem. Soc. 1995, 42, 499.
11.Becker, E. D.; Liddel, U. J. Mol. Spectrosc. 1958, 2, 1.
12.Schwager, F.; Marand, E.; Davis, R. M. J. Phys. Chem. 1996, 100, 19268.
13.Van Ness, H. C.; Winkle, J. V.; Richtol, H. H.; Hollinger, H. B. J. Phys. Chem. 1967, 71, 1483.
14.Sassa, Y.; Katayama, T. J. Chem. Eng. Jpn. 1973, 6, 31.
15.Liu, Y.; Maeda, H.; Ozaki, Y.; Czarnecki, M. A.; Suzuki, M.; Iwahashi, M. Appl. Spectrosc. 1995, 49, 1661.
16.Ferraris, G.; Ivaldi, G. Acta Cryst. 1984, B40, 1-6.
17.Lundgren, J. O.; Olovsson, I. The Hydrogen Bond Recent Developments in Theory and Experiments, Amsterdam: North Holland Publishing Co., 1976.
18.Johari, G. P.; Dannhauser, W. J. Phys. Chem. 1968, 72, 3273.
19.Dannhauser, W. J. Chem. Phys. 1968, 48, 1911.
20.Musa, R. S.; Eisner, M. J. Chem. Phys. 1959, 30, 227.
21.Tucker, E. E.; Becker, E. D. J. Phys. Chem. 1973, 77, 1783.
22.Hofman, T.; Buchowski, H. J. Chem. Soc., Faraday Trans. 1992, 88, 689.
23.Salcedo, D.; Costas, M. J. Chem. Soc., Faraday Trans. 1997, 93, 3781.
24.Schneider, W. G.; Bernstein, H. J.; Pople, J. A. J. Chem. Phys. 1958, 28, 601.
25.Jeffrey, G. A. An Introduction to Hydrogen Bonding. Oxford: Oxford University, 1997; pp 1-32, pp 213-256.
26.Keith J. L.; John, H. M. Physical Chemistry. Oxford: London: The Benjamin/Cummings Publishing Co., 1982; p515.
27.Joesten, M. D. Hydrogen Bonding. New York: Marcel Dekker, Inc., 1974; pp. 1-51.
28.Pauling, L. The Nature of the Chemical Bond. Ithaca, NY: Comell University Press, 1939.
29. Arnold, J. T.; Packard, M. E. Phys. Rew. 1951, 83, 210.
30. Liddel, U.; Ramsey, N. F. J. Chem. Phys. 1951, 19, 1608.
31. Davies, D. B.; Veselkov, D. A.; Veselkov, A. N. Mol. Phys. 1999, 97, 439.
32. Aradi, F. Biophys. Chem. 1995, 54, 67.
33. Georgiev, G. S.; Koseva, N. S.; Christov, L. K. Polym. Int. 1995, 37, 277.
34. Turky, G.; Hanna, F. F.; Klages, G.; Ghoneim, A.; Stockhausen, M. Zeit. für Natur. Sec. A , 1994, 49, 503.
35. Georgiev, G. S.; Koseva, N. S.; Christov, L. K. Polym. Int. 1995, 36, 227.
36. Hanna, F. F.; Shafik, A. H.; Stockhausen, M. Zeit. für Natur. Sec. A , 1995, 50, 785.
37. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703.
38. Chen, J. S.; Shiao, J. C. J. Chem. Soc. Faraday Trans. 1994, 90, 429.
39. Lin, C. C.; Fang, C. Y.; Kao, D. Y.; Chen, J. S. J. Solu. Chem. 1997, 26, 817.
40. Luo, W. C.; Lin, C. C.; Lin, J. A.; Kao, D. Y.; Chen, J. S. J. Chin. Chem. Soc. 2000, 47, 1177-1183.
41.Becker, E. D. High Resolution NMR. New York: Academic Press, Inc., 1969; pp. 12-37.
42. Pople, J. A.; Schneider, W. G.; Bernstein, H. J. High Resolution Nuclear Magnetic Resonance. New York: McGraw Hill, 1959, pp. 218-230.
43.Akitt, J. W. NMR and Chemistry. London: Chapman and Hall, Second Edition, 1983, pp. 61-101.
1-2 參考文獻
1. Drago, R. S. Physical Methods for Chemists, second edition, 1992.
2. Gutowsky, H. S.; Saika, A. J. Chem. Phys. 1953, 71, 1688.
3.Chen, J. S. J. Chem. Soc. Faraday Trans. 1994, 90, 717.
4.Chen, J. S.; Shirts, R. B. J. Phys. Chem. 1985, 89, 1643.
5.Chen, J. S.; Rosenberger, F. Tetrahedron Lett. 1990, 31, 3975.
6.Lin, C. C.; Fang C. Y.; Kao, D. Y.; Chen, J. S. J. Solu. Chem. 1997, 26, 817.
7. Somers , B. G.; Gutowsky, H. S. J. Am. Chem. Soc. 1963, 85, 3065.
3-6 參考文獻:
1.Errera, J.; Mollet, P. Nature, 1936, 138, 882.
2.Griffiths, V. S.; Socrates, G. J. Mol. Spectrosc. 1966, 21, 302.
3.Patterson, L. K.; Hammaker, R. M. Spectrochim. Acta. 1967, 23A, 2333.
4.Iwahashi, M.; Hayashi, Y.; Hachiya, N.; Matsuzawa, H.; Kobayashi, H. J. Chem. Soc., Faraday Trans. 1993, 89, 707.
5.Chen, J. S.; Shiao, J. C.; J. Chem. Soc., Faraday Trans. 1994, 90, 429.
6.Chen, J. S.; Shiau, J. C.; Fang, C. Y. J. Chin. Chem. Soc. 1995, 42, 499.
7.Becker, E. D.; Liddel, U. J. Mol. Spectrosc. 1958, 2, 1.
8.Schwager, F.; Marand, E.; Davis, R. M. J. Phys. Chem. 1996, 100, 19268.
9.Van Ness, H. C.; Winkle, J. V.; Richtol, H. H.; Hollinger, H. B. J. Phys. Chem. 1967, 71, 1483.
10.Sassa, Y.; Katayama, T. J. Chem. Eng. Jpn. 1973, 6, 31.
11.Liu, Y.; Maeda, H.; Ozaki, Y.; Czarnecki, M. A.; Suzuki, M.; Iwahashi, M. Appl. Spectrosc. 1995, 49, 1661.
12.Graener, H.; Ye, T. Q.; Laubereau, A. J. Chem. Phys. 1989, 90, 3413.
13.Johari, G. P.; Dannhauser, W. J. Phys. Chem. 1968, 72, 3273.
14.Dannhauser, W. J. Chem. Phys. 1968, 48, 1911.
15.Musa, R. S.; Eisner, M. J. Chem. Phys. 1959, 30, 227.
16.Tucker, E. E.; Becker, E. D. J. Phys. Chem. 1973, 77, 1783.
17.Hofman, T.; Buchowski, H. J. Chem. Soc., Faraday Trans. 1992, 88, 689.
18.Salcedo, D.; Costas, M. J. Chem. Soc., Faraday Trans. 1997, 93, 3781.
19.Liddel, U.; Ramsey, N. F. J. Chem. Phys. 1951, 19, 1608.
20.Liddel, U.; Becker, E. D. Spectrochim. Acta. 1957, 10, 70.
21.Peeters, D.; Leroy, G. J. Mol. Struc. 1994, 314, 39.
22.Ng Soon, J. Chem. Soc., Faraday Trans. I, 1976, 72, 1101.
23.Førland, G. M.; Liang, Y.; Kvalheim, O. M.; Hoiland, H.; Chazy, A. J. Phys. Chem. B, 1997, 101, 6960.
24.Stillson, G. H.; Sawyer, D. W.; Hunt, C. K. J. Am. Chem. Soc. 1945, 67, 303.
25.Somers , B. G.; Gutowsky, H. S. J. Am. Chem. Soc. 1963, 85, 3065.
26.Habibullah, M.; Walker, S. J. Chem. Soc., Faraday Trans. I 1989, 85 , 3145.
27.Becker, E. D. High Resolution NMR, Second edition. Academic Press, Inc., London. 1980, p. 47.
28.Chen , J. S. J. Chem. Soc., Faraday Trans. 1994, 90, 717.
29. Chen, J. S.; Shirts, R. B. J. Phys. Chem. 1985, 89, 1643.
30. Chen, J. S.; Rosenberger, F. Tetrahedron Lett. 1990, 31, 3975.
31. Fletcher, A. N.; Heller, C. A. J. Phys. Chem. 1967, 71, 3742.
32. Šašić, S.; Kuzmanović, M. J. Raman Spectrosc. 1998, 29, 593.
33.Tribble, M. T.; Traynham, J. G. J. Am. Chem. Soc. 1969, 91, 379.
4-5參考文獻:
1. Wendt, H.; Berger, C.; Baici, A.; Thomas, R. M.; Bosshard, H. R. Biochem. 1995, 34, 4097.
2. Wendt, H.; Leder, L.; Härmä, H.; Jelesarov, I.; Baici, A.; Bosshard, H. R. Biochem. 1997, 36, 204.
3. Pranata, J. J. Phys. Chem. 1995, 99, 4855.
4.Ramondo, F.; Cesaro, S. N.; Bencivenni, L. J. Mol. Struct. 1993, 291, 219.
5.Barthes, M.; Bordallo, H. N.; Eckert, J.; Maurus, O.; Nunzio, G. de; Léon, J. J. Phys. Chem. B, 1998, 102, 6177.
6.Ben-Tal, N.; Sitkoff, D.; Topol, I. A.; Yang, A. S.; Burt, S. K.; Honig, B. J. Phys. Chem. B, 1997, 101, 450.
7.Purcell, J. M.; Susi, H.; Cavanaugh, J. R. Can. J. Chem. 1969, 47, 3655.
8.Franzen, J. S.; Stephens, R. E. Biochem. 1963, 2, 1321.
9.Susi, H.; Ard, J. S. Arch. Biochem. Biophys. 1966, 117, 147.
10.Chen, J. S. J. Chem. Soc. Faraday Trans. 1994, 90, 717.
11.Careri, G.; Buontempo, U.; Galluzzi, F.; Scott, A. C.; Gratton, E.; Shyamsunder, E. Phys. Rev. B, 1984, 30, 4689.
12.Barthes, M.; Almairac, R.; Sauvajol, J. L.; Moret, J.; Currat, R.; Dianoux, J. Phys. Rev. B, 1991, 43, 5223.
13.Barthes, M.; Almairac, R.; Sauvajol, J. L.; Currat, R.; Moret, J.; Ribet, J. L. Europhys. Lett. 1988, 7, 55.
14.Doig, A. J.; Williams, D. H. J. Am. Chem. Soc. 1992, 114, 338.
15.Scott, A. C.; Bigio, I. J.; Johnston, C. T. Phys. Rev. B, 1989, 39, 12883.
16.Careri, G.; Gratton, E.; Shyamsunder, E. Phys. Rev. A, 1988, 37, 4048.
17.Eichele, K.; Lumsden, M. D.; Wasylishen, R. E. J. Phys. Chem. 1993, 97, 8909.
18.Rubini, P.; Champmartin, D. Magn. Reson. Chem. 1996, 34, 891.
19.Buntkowsky, G.; Sack, I.; Limbach, H. H.; Kling, B.; Fuhrhop, J. J. Phys. Chem. B, 1997,101, 11265.
20.Johnson, S. W.; Eckert, J.; Barthes, M.; McMullan, R. K.; Muller, M. J. Phys. Chem. 1995, 99, 16253.
21.Chen, J. S.; Shirts, R. B. J. Phys. Chem. 1985, 89, 1643.
22.Chen, J. S.; Rosenberger, F. Tetrahedron Lett. 1990, 31, 3975.
23.Chen, J. S.; Shiau, J. C.; Fang, C. Y. J. Chin. Chem. Soc. 1995, 42, 499.
24.Luo, W. C.; Lay, J. L.; Chen, J. S. to appear in Zeit. für Phys. Chem.
25.Muller, N.; Reiter, R. C. J. Chem. Phys. 1965, 42,3265.
26.Chen, J. S.; Shiao, J. C. J. Chem. Soc. Faraday Trans. 1994, 90, 429.
27.Lin, C. C.; Fang, C.Y.; Kao, D. Y.; Chen, J. S. J. Solution. Chem. 1997, 26, 817.
28.Graham, L. L.; Chang, C. Y. J. Phys. Chem. 1971, 75, 776.
29.Klotz, I. M.; Farnham, S. B. Biochem. 1968, 7, 3879.
5-6參考文獻:
1.Errera, J.; Mollet. P. Nature, 1936, 138, 882.
2.Małecki. J. A. Chem. Phys. Lett. 1998, 297, 29.
3.Liddel, U.; Becker. E. D. Spectrochim. Acta, 1957, 10, 70.
4.Czarnecki, M. A.; Maeda, H.; Ozaki, Y.; Suzuki, M.; Iwahashi. M. J. Phys. Chem. A, 1998, 102, 9117.
5.Laenen, R.; Simeonidis. K. Chem. Phys. Lett. 1998, 292, 631.
6.Salcedo, D.; Costas. M. J. Chem. Soc. Faraday Trans. 1997, 93, 3781.
7.Becker, E. D.; Liddel. U. J. Mol. Spectrosc. 1958, 2, 1.
8.Brink, G.; Campbell, C.; Glasser. L. J. Phys. Chem. 1976, 80, 2560.
9.Singh, S.; Rao. C. N. R. J. Phys. Chem. 1967, 71, 1074.
10.Johari, G. P.; Sartor. G. J. Phys. Chem. B, 1997, 101, 8331.
11.Dannhauser, W. J. Chem. Phys. 1968, 48, 1911.
12.Patterson, L. K.; Hammaker, R. M. Spectrochim. Acta, 1967, 23A, 2333.
13.Chen, J. S.; Shiau, J. C.; Fang. C. Y. J. Chin. Chem. Soc. 1995, 42, 499.
14.Luo, W. C.; Lay, J. L.; Chen. J. S. Zeit. für Phys. Chem. 2001, 215, 1.
15.Chen, J. S.; Shiao. J. C. J. Chem. Soc. Faraday Trans. 1994, 90, 429.
16.Becker, E. D. High Resolution NMR, Second edition. Academic Press, Inc., London. 1980, p. 47.
17.Gutowsky, H. S.; Saika, A. J. Chem. Phys. 1953, 21, 1688.
18.Chen, J. S. J. Chem. Soc. Faraday Trans. 1994, 90, 717.
19.Chen, J. S.; Shirts, R. B. J. Phys. Chem. 1985, 89, 1643.
20.Chen, J. S.; Rosenberger, F. Tetrahedron Lett. 1990, 31, 3975.
21.Luo, W. C.; Chen, J. S. Zeit. für Phys. Chem. 2001, 215, 447.
22.賴志隆,〝以NMR探討一些具有立體障礙的醇類之氫鍵〞國立交通大學應用化學研究所碩士論文 (1999).
23.Dugue, C.; Emery, J.; Pethrick, R. A. Mol. Phys. 1980, 41, 703.
24.Alonso, M. C.; Costas, M.; Ball, L. A.; Patterson, D. Can. J. Chem. 1988, 66, 989.
25.David R. Lide, CRC Handbook of Chemistry and Physics, 77th ed., (1987).
26.Gupta, R. B.; Combes, J. R.; Johnston, K. P. J. Phys. Chem. 1993, 97, 707.
27.Shinomiya, K.; Shinomiya, T. Bull. Chem. Soc. Jpn. 1990, 63, 1093.
28.Smith, F. A.; Creitz, E. C. J. Research Natl. Bur. Standards. 1951, 46, 145.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top