|
[1] R. P. Anstee and M. Farber, Characterization of totally balanced matrices, J. Algo-rithms 5 (1984), 215-230. [2] S. Arumugam and S. Velammal, Edge domination in graphs, Taiwanese J. Math. 2 (1998) 173-179. [3] G. J. Chang, Labeling algorithms for domination problems in sun-free chordal graphs, Discrete Applied Math. 22 (1988/89), 21-34. [4] G. J. Chang, Algorithmic aspects of domination in graphs, in: Handbook of Combi-natorial Optimization (D.-Z. Du and P. M. Pardalos eds.) Vol. 3 (1998) 339-405. [5] G. J. Chang and G. L. Nemhauser, The k-domination and k-stability on sun-free chordal graphs, SIAM J. Alg. Discrete Methods 5 (1984) 332-345. [6] E. J. Cockayne, S. E. Goodman and S. T. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Letters 4 (1975) 41-44. [7] M. Farber, Domination, independent domination and duality in strongly chordal graphs, Discrete Applied Math. 7 (1984) 115-130. [8] J. F. Fink and M. S. Jacobson, n-domination in graphs, Graph Theory with Applica-tions to Algorithms and Computer Science, Wiley, New York (1984), 283-300. [9] F. Harary and T. W. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155 (1996) 99-105. [10] F. Harary and T. W. Haynes, Double domination in graphs, Ars Combinatoria 55 (2000) 201-213. [11] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: The Theory, Marcel Dekker, Inc. New York (1998).[12] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Domination in Graphs: Selected Topics, Marcel Dekker, Inc. New York (1998). [13] A. J. Hoffman, A. W. J. Kolen and M. Sakarovitch, Totally-balanced and greedy matrices, SIAM J. Alg. Discrete Methods 6 (1985) 721-730. [14] S. F. Hwang and G. J. Chang, The edge domination problem, Discussiones Math.— Graph Theory 15 (1995) 51-57. [15] V. R. Kulli, On n-total domination number in graphs, in: Graph Theory, Combina-torics, Algorithms, and Applications, SIAM Philadelphia, PA (1991) 319-324. [16] R. Laskar, J. Pfaff, S. M. Hedetniemi and S. T. Hedetniemi, On the algorithm com-plexity of total domination, SIAM J. Alg. Discrete Methods 5 (1984) 420-425. [17] A. Lubiw, Doubly lexical ordering of matrices, SIAM J. Comput. 16 (1987) 854-879. [18] S. L. Mitchell and S. T. Hedetniemi, Edge domination in trees, in: Proceedings Eighth S. E. Conference on Combinatorics, Graph Theory and Computing, Utilitas Math., Winnipeg (1977) 489-509. [19] R. Paige and R. E. Tarjan, Three partition refinement algorithms, SIAM J. Comput. 16 (1987) 973-989. [20] P. J. Slater, R-Domination in graphs, J. Assoc. Comput. Mach. 23 (1976) 446-450. [21] J. P. Spinrad, Doubly lexical ordering of dense 0-1 matrices, Inform. Process. Lett. 45 (1993) 229-235. [22] M. Yannakakis and F. Gavril, Edge dominating sets in graphs, SIAM J. Applied Math. 38 (1980) 364-372. [23] H. G. Yeh and G. J. Chang, Algorithmic aspects of majority domination, Taiwanese J. Math. 1 (1997) 343-350. [24] H. G. Yeh and G. J. Chang, Weighted connected domination and Steiner trees in distance-hereditary graphs, Discrete Applied Math. 87 (1998) 245-253. [25] H. G. Yeh and G. J. Chang, Weighted k-domination and weighted k-dominating clique in distance-hereditary graphs, Theoretical Computer Science (accepted).
|