跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/03 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭孝威
研究生(外文):CHENG HSIAO WEI
論文名稱:DWDM系統中穿透式單模光纖Fabry-Perot干涉器的研製及其特性量測
論文名稱(外文):Investigation of single mode fiber Fabry-Perot Interferometer and its characteristics in DWDM system
指導教授:李正中李正中引用關係
指導教授(外文):LEE CHENG CHUNG
學位類別:碩士
校院名稱:國立中央大學
系所名稱:光電科學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:67
中文關鍵詞:Fabry-Perot 干涉器感光雙光束干涉光纖布拉格光柵高密度多波分工器
外文關鍵詞:Fabry-Perot InterferometerPhoto-sensitiveTwo beam interferenceFiber Bragg GratingDense Wavelength-division Multiplexing system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:2
本論文主要目的在研究並實現波長1.55微米附近的光經過單模光纖光柵Fabry - Perot﹙F-P﹚干涉器後具有光選擇和光穿透特性。我們利用波長248nm的準分子雷射(Excimer Laser)經過相位光罩(Phase Mask)後繞射並產生雙光束干涉,在摻鍺的感光光纖上寫製光柵。由於傳統光纖光柵(Fiber Bragg Grating)是使用其反射光譜,所以我們在此提出一個新方法利用Fabry-Perot型的多光束干涉特性,產生特定波長穿透的窄帶率光器(Narrow Band-Pass Filter),以期將它用在高密度多波道光纖通訊(DWDM)中。我們對一個共振腔的F-P光纖光柵設計及製作,並改善其光譜特性,再加以研究比較F-P 光纖光柵與傳統反射式光纖光柵在受溫度及壓力後的特性,可提供將來對元件的應用及受環境影響的補償。

The main destination of this thesis is to investigate and fabricate single mode Fabry-Perot interferometer fiber for near 1.55 um wavelength. We use a wavelength 248 nm excimer laser to explore the Ge-dopped photo-sensitive fiber. The light diffraction across phase mask and produce two beam interference. The traditional Fiber Bragg Grating can reflect selected wavelength. In this thesis we use Fabry-Perot type to fabricate Fiber Bragg Grating to transmit a selected wavelength for Dense Wavelength-Division Multiplexing system.
By comparing the effects of heat and stress to the traditional Fiber Bragg Grating and Fabry-Perot type Fiber Bragg Grating, we can provide the reference investigated here is very useful for the compensation when using in the outside environment.

第一章 緒論
第二章 理論分析
2.1 光纖光柵的基本理論
2.1.1 布拉格光纖光柵簡述
2.1.2 準分子雷射寫錄光纖光柵
2.1.3 光纖光柵的製作
2.1.4 布拉格波長
2.1.5 布拉格波長的飄移
2.2 Fabry-Perot Interferometer(FPI)的基本理論
2.2.1 Fabry-Perot 的基本型態
2.2.2 Fabry-Perot 型全介電質單腔窄帶率光器
第三章 光纖光柵在DWDM系統中的應用
3.1 DWDM系統簡介
3.2 光纖光柵的應用
第四章 實驗儀器及量測工具
4.1 製作光纖光柵的基本實驗儀器與器材
4.2 加熱與加壓量測的基本實驗儀器與器材
4.3 實驗裝置示意圖
4.3.1 光纖光柵製作實驗裝置
4.3.2 加熱實驗裝置
4.3.3 加壓實驗裝置
4.4 執行步驟
第五章 實驗成果與分析討論
5.1 模擬軟體理論分析
5.1.1 單腔F-P光纖光柵的模擬
5.1.2 軟體模擬結果分析
5.2 實際製作結果與理論比較分析
5.2.1 光纖光柵(FBG)實際製作反射光譜分析
5.2.2.1 相位光罩週期1.0714 μm
5.2.2.2 相位光罩週期1.0726 μm
5.2.2 光纖光柵(FBG)中心波長與寫錄時間關係的分析
5.2.2.1 相位光罩週期1.0714 μm
5.2.2.2 相位光罩週期1.0726 μm
5.2.3 單腔F-P型光纖光柵實際製作穿透光譜結果分析
5.2.2.1 相位光罩週期1.0714 μm
5.2.2.2 相位光罩週期1.0726 μm
5.3 加熱對光纖光柵的影響分析
5.3.1 光纖光柵(FBG)的加熱分析
5.3.2 F-P型光纖光柵的加熱分析
5.4 加壓對光纖光柵的影響分析
5.4.1 光纖光柵(FBG)的加壓分析
5.4.2 F-P型光纖光柵的加壓分析
第六章 結論
參考資料
附錄
A-1 市售光纖光柵的規格範例
A-2 百分比與dB換算參考
A-3 量測壓力彈簧參考資料
作者簡介

[1]白中和 “光纖通訊技術,” 建興出版社, (1998).
[2] K.O. Hill, Y Fujii, D.C. John, B.S. Kawasaki, “Photosensitivity in optical fiber waveguides:application to reflection filter fabrication.” Appl. Phy. Lett., 32, p.647-649, (1978).
[3] G. Meltz, W.W. Morey, W.H. Glenn, “Formation of Bragg gratings in optical fibers
by a transverse holographic method, “ Opt.Lett. vol.14, no.15, p. 823-825,(1989)
[4]李正中 “薄膜光學與鍍膜技術,” 藝軒圖書出版社, p.202-218,(1999).
[5] Beatriz Ortega, Jose` Capmany, “Wavelength Division Multiplexing All-Fiber Hybrid Devices Based on Fabry-Perot`s and Gratings,” Journal of Lightwave Technology, vol. 17, no.7, (1999).
[6] M. T. Camargo Silva, C. A. DE Francisco, “Bandpass-Flattened in-line Multichannel Transmission Optical Fiber Filter,” Tucc3, p.376-377.
[7] D. S. Starodubov, V. Grubsky, J. Feinberg, “All-Fiber Bandpass Filter with Adjustable Transmission Using Cladding-Mode Coupling,” IEEE Photonics Technology Letters, vol.10, no.11, p.1590-1592, (1998).
[8] H. A. Haus and Y. Lai ,” Theory of cascaded quarter wave shifted distributed feedback resonators ,” IEEE J.Quantum Electron. 28(1), p205-213, (1992).
[9] R. Zengerle and O. Leminger, ’’Phase-shifted Bragg-grating filter with improved transmission characteristics,” J. Lightwave Technol. 13(2), p.2354-2358, (1995).
[10] G. P. Agrawal and S. Radic ,”Phase-shifted filter fiber Bragg gratings and their applications for wavelength demultiplexing,” IEEE Photon. Lett. 6, p.955-997, (1994).
[11] R. Kashyap, P.E. McKee and D. Armes, ”UV written reflection grating structures
in photosensitive optical fiber using phase-shifted phase-masks,” Electron. Lett.,
30(23), p.1997-1978, (1994).
[12] J. Canning and M. G. sceats, “ -phase shifted periodic distributed structures in
optical fibers by UV post-processing,”Electron. Lett. 30(16),p.1244-1245,(1994).
[13] L. Wei and W. Y. Lit, ”Phase-shifted Bragg grating filter with symmetrical structures,” IEEE J Lightwave Technol,.15(8), p.1405-1410, (1997).
[14] S. Legoubin, M. Douay, P. Bernage and P. Niay, ”Free spectral range variations of grating-based Fabry-Perot photowritten in optical fibers,” J. Opt. Soc. Am. A 12(8), p.1687-1694, (1995).
[15] A.R. Miguel., S.M. Michelle and J.B. James, “Transmission properties of refractive
index-shifted Bragg gratings,” Optics Communications ,177,p.251-257, (2000).
[16] Wei-Chong Du, “Fiber Bragg Grating Cavity Sensor for simultaneous Measurement of Strain and Temperture,” IEEE Photonics Technology Letters, vol.11, no.1, (1999).
[17] P. J. Henderson, Y. J. Rao, D. A. Jackson, J.Zhang and I.Bennion, “Simultaneous dynamic-strain and temperature monitoring using a wavelength-multiplex fiber Fabry-Perot array with low-coherence interrogation,” in Proc. OFS`12, Williamsburg, VA, p.56-59, (1997).
[18] S. W. James, M. L. Dockney and R. P. Tatam, “Simultaneous independent temperature and strain measurement using in-fiber Bragg grating sensors,” Electron. Letters, vol.32, p.1133-1134, (1996).
[19] L. Qin, Z. X. Wei, Q.Y. Wang, H.P. Li, W. Zheng, Y.S. Zhang, D.S. Gao, “Compact temperature-compensating package for long-period fiber gratings,” Optical Materials
, 14, p.239-242, (2000).
[20]鍾隆維 “光纖光柵之理論計算與實際製作研究,”中正理工學院碩士論文, (2000).
[21] Harry J. R. Dutton, “Understanding Optical Communications,” IBM, (2000)
[22] K. M. Djafar, L.S. Lowell, “Fiber-Optic Communications Technology,” Prentice Hall, (2001).
[23] Gerd Keiser, “Optical Fiber Communications,” Mc Graw Hill, (2000).
[24] Chingchung Yang, Yinchieh Lai, “Apodised fiber Bragg gratings fabricated with a uniform phase mask using Gaussian beam laser,” Optics & Laser Technology, 32, p.307-310, (2000).
[25] P. E. Dyer, R. J. Farley, R. Giedl, “Analysis of grating formation with excimer laser irradiated phase masks,” Optics Communications, 115, p.327-334, (1995).
[26] M. Ardito, L.Boschis, R. Palumbo, and G. Meneghini, “Fabrication of phase masks, for fiber grating printing, using EBL and CHF3RIE,” Microelectronic Engineering, 46, p.251-254, (1999).
[27] K.O. Hill, B Malo, F.Bilodeau, D.C. Johnson and J. Albert, “Bragg grating
fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett.,vol.62,no.10, p.1035-1037, (1993).
[28] J.M. Lerner, J. Flamand, J. P. Laude, G. Passereau and A. Thevenon, “Diffraction gratings ruled and holographic-a review,” in Proc. Of SPIE Symposium on Periodic Structures, Gratings, Moire` Patterns and Diffraction Phenomenon, vol.240 , p.82-88, (1980).
[29] J. Martin, J. Lauzon, S. Thibault and F. Ouellette, “Novel writing technique of long highly reflective in fiber grating and investigation of the linearly chirped component,” Post-deadline paper PD29-1, 138, Proc. Conference on Optical Fiber Communications, OFC`94 (1994).
[30] K.M. Christi, H.Z. Jian, “Optical Filter Design and Analysis: a signal processing approach,” Wiley,New York, (1999).
[31] Toru Mizunami, Tatsuya Itoh, sanjay Gupta, Teruo Shimomura, “Interferometric measurement of KrF-laser-induced refractive index changes in germanosilicate fibers,” Optics Communications, 125, p226-230, (1996).
[32] Dietmar Johlen, Hagen renner, Andreas Ewald, Ernst Brinkmeyer, “Fiber Bragg grating Fabry-Perot interferometer for a precise measurement of the UV-induced index change,”ECOC`98, p.393-394, (1998).
[33] Raman Kashyap, “Fiber Bragg Grating,” Academic Press, (1999).
[34] E. Kreyszig, “in Advanced Engineering Mathematics,” 5th Ed.,Wiley,New York
p.345, (1992).
[35] Amnon Yariv, Pochi Yeh, “Optical Waves in Crystals:propagation and Control of Laser Radiation,” Mei Ya Publications,Taiwan, (1984).
[36] Jia Hongzhi, Li Yulin, “First- and Second-order diffraction characteristics of fiber Bragg gratings,” Optics Communication, 178, p.339-343, (2000).
[37] Martin McCall, “On the Application of Coupled Mode Theory for Modeling Fiber Bragg Gratings,” Journal of Lightwave Technology, vol.18, no.2, p.236-242, (2000).
[38] A. S. Thmoas, E. W. Alice, F.Y. Man, “Strong Bragg phase gratings in phosphorus-doped fiber induced by ArF excimer radiation”, OFC`95 ,paper WN2, (1995).
[39] Yariv, “Optical Electronics,” 4th ed, Saunders College Publishing, p.112, (1991).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top