|
1. Miyajima, A., Kitamura, T., Harada, N., Yokota, T., and Arai, K. 1992. Cytokine receptor and signal transduction. Annu. Rev. Immunol. 10:295-331. 2. Yen, J.J., Yang-Yen, H.F., Huang, H.M., Hsieh, Y.C., Lee, S.F., Chao, J.R., and Lee, J.C. 1997. Molecular mechanisms of growth and death control of hematopoietic cells by cytokines. Programmed cell death. Chapter 13. 3. Nicola, N. A. 1994 Guidebook to cytokines and their receptors. Oxford University Press. 4. Thomson, A. 1991. The cytokine handbook. Chapter 1. Academic Press Limited. 5. Metcalf, D. 1989 The molecular control of cell division, differentiation commitment and maturation in haemopoietic cells. Nature 339:27-30. 6. Williams, G. T., C. A. Smith, E. Spooncer, T. M. and D.R. Taylor. 1990. Haemopoietic colony stimulating factors promote cell survival by suppressing apoptosis. Nature 343:76-79. 7. Rodriguez-Tarduchy, G., M. Collins, and A. Lopez-Rivas. 1990. Regulation of apoptosis in interleukin-3-dependent hemopoietic cells by interleukin-3 and calcium ionophores. EMBO J. 9:2997-3002. 8. Arai, Ken-ichi,Lee, K., Miyajima, A., Miyatake, S., Arai N., and Yokota, T. 1990 Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59:783-836. 9. Schrader, J.W. 1986. The panspecific hemopoietin of activated T lymphocytes (interleukine-3). Ann. Rev. Immunol. 4:205-30. 10. Ihle, J. N., Keller, j., Oroszlan, S., Henderson, L. E., Copeland, T. D., Fitch, F., Prystowsky, M. B., Golddwasser, E., Schrader, J. W., Palaszynski, E., Dy, M., and Lebel, B. 1983. Biologic properties of homogenous interleukin 3. 131:282-287. 11. Mire-Sluis A. and Thorpe R. 1998. Cytokines. Chpater 3: interleukine-3. Academic press. 12. Fung, M.C., Hapel, A.J., Ymer,S., et al. 1984. Molecular cloning of cDNA for murine interleukin-3. Nature. 307:233-237. 13. Otsuka, T., Miyajima, A., Brown, N., et al.1988. Isolation and characterization of an expressible cDNA encoding human IL-3. J. Immunol. 140:2288-2295. 14. Ihle, J. N., Keller, j., Henderson, L. E., Klein, F. and Palaszynski, E. 1982. Procedures for the purification of interleukin 3 to homogeneity. J. Immunol. 129:2431-2436. 15. Niemeyer, C.M., Sieff, C.A., Mathey-Prevot,B., et al. 1989. Expression of human interleukin-3 (multi-CSF) is restricted to human lymphocytes and T-cell tumor lines. Blood. 73:945-951. 16. Ymer, S., Tucker, Q. J., Sanderson, C. J., Hapel A. J., Campbell, H. D. and Young I. G. 1985. Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature. 317:255-258. 17. Leo, S. 1987. The molecular control of blood cell development. Science. 238:1374-1379. 18. Palacios, R., Henson, G., Steinmetz, M. and McKearn, J. P. 1984. Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature. 309:126-131. 19. Palacios, R., and Steinmetz, M. 1985. IL3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell. 41:727-734. 20. Rennick, D., Jackson, J., Moulds, C., Lee, F. and Yang, G. 1989. IL-3 and stromal cell-derived factor synergistically stimulate the growth of pre-B cell lines cloned from long-term lymphoid bone marrow cultures. J. Immunol. 142:161-166. 21. Kitamura, T., N. Sato, K. Arai, and A. Miyajima. 1991. Expression cloning of the human IL3 receptor cDNA reveals a shared b subunit for the human IL-3 and GM-CSF receptors. Cell. 66:1165-1174. 22. Hayashida, K., T. Kitamura, D. M. gorman, K.-I. Arai, T. Yokota, and A. Miyajima.1990. Molecular cloning of a second subunit of the receptor for human granulocyte-macrophage colony-stimulating factor (GM-CSF): reconstitution of a high-affinity GM-CSF receptor. Proc. Natl. Acad. Sci. USA. 87:9655-9659. 23. Bagley, C.J., Woodcock, J.Mfactor., Stomski, F.C., and Lopez, A.F. 1997. The structural and functional basis of cytokine receptor activation: lessons from the common b subunit of the granulocyte-macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 receptors. Blood. 89:1471-1482. 24. Stomski, F.C., Sun, Q., Bagley, C.J., Woodcock, J., Goodall, G., Andrews, R.K., Berndt, M.C. and Lopez, A.F. 1996. Human interleukin-3 (IL-3) induces disulfide-linked IL-3 receptor a- and b-chain heterodimerization, which is required for receptor activation but not high-affinity binding. Mol. Cell. Biol.16: 3035-3046. 25. Sato, N., Sakamaki, K., Terada, N. Arai, K.-I., and Miyajima, A. 1993. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common b subunit responsible for different signaling. EMBO. J. 12: 4181-4189. 26. Sakamaki, K., Miyajima, I., Kitamura, T. and Miyajima, A. 1992. Critical cytoplasmic domains of the common bsubunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO. J. 11:3541-3549 27. Jucker, M., and Feldman, R. A. 1996. Molecular aspects of myeloid stem cell development. Page:67-75. Springer press. 28. Thompson, C. B. 1996. A fate worse than death. Nature. 382:492-493. 29. Rathmell J. C. and Thompson, C. B. 1999. The central effectors of cell death in the immune system. Annu. Rev. Immunol. 17: 781-828. 30. Ellis, H. M. and Horvitz, R. 1986. Genetic control of programmed cell death in the nematode C. elegans. Cell. 44: 817-829. 31. Ellis, R. E. and Horvitz, R. 1991. Two C. elegans genes control the programmed deaths of specific cells in the pharynx. Development.112: 591-603. 32. Ellis, R. E. 1992. Negative regulators of programmed cell death. Current opinion in genetics and development. 2:635-641. 33. Hunot, S. and Flavell, R. A. 2001. Death of a monopoly? Science. 292: 865-867. 34. Joza, N., Susin, S. A., Daugas, E., Stanford, W. L., Cho, S. K., Li, C.Y.J., Sasaki, T., Elia, A. J., Cheng, H.-Y. M., Ravagnan, L., Ferri, K. F., Zamzami, N., Wakeham, A., Yoshida, H., Kong, Y-Y., Mak, T.W., Zuniga-Pflucker, J. C., Kroemer, G., and Penninger, J. M. 2001. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature. 410:549-554. 35. Chao, D. T. and Korsmeyer, S. J. 1998. Bcl-2 family: regulators of cell death. Annu. Rev. Immunol. 16: 395-419. 36. Metzstein, M. M., Hengartner, M. O., Tsung, N., Ellis, R. E., and Horvitz, H. R. 1996. Transcriptional regulator of programmed cell death encoded by Caenorhabditis elegans gene ces-2. Nature. 382:545-547. 37. Inaba, T., Inukai, T., Yoshihara, T., Seyschab, H., Laken, S. J., Kastan, M. B. and Look, A. T. 1996. Reversal of apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor. Nature. 382: 541-544. 38. Kuribara, R., Kinoshita, T., Miyajima, A., Shinjyo, T., Yoshihara, T., Inukai, T., Ozawa, K., Look, A. T., and Inaba, T. 1999. Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-XL, regulate the survival of murine Pro-B lymphocytes. Mol. Cell. Biol. 19: 2754-2762. 39. Ikushima, S., Inukai, T., Inaba, T., Nimer, S. D., Cleveland, J.L., and Look, A. T. 1997. Pivotal role for the NFIL3/E4BP4 transcription factor in interleukin 3-mediated survival of pro-B lymphocytes. Proc. Natl. Aci. USA. 94:2609-2614. 40. Inukai, T., Inoue, A., Kurosawa, H., Goi, K., Shinjyo, T., Ozawa, K., Mao, M., Inaba, T., and Look, A. T. 1999. SLUG, a ces-1-related Zinc finger transcription factor gene with antiapoptotic activity, is a downstream target of E2A-HLF oncoprotein. Mol. Cell. 4: 343-352. 41. Walsh, D. A., Perkins, J. P., and Krebs, E. G. 1968. An adenosine 3'', 5''-monophosphate-dependent protein kinase from rabbit skeletal muscle. J. Biol. Chemi. 243: 3763-3774. 42. Wang, L., Sunahara, R. K., Krumins, A., Perkins, G., Crochiere, M. L., Mackey, M., Bell, S., Ellisman, M. H., and Taylor, S. S. 2001. Cloning and mitochondrial localization of full-length D-AKAP2, a protein kinase A anchoring protein. Proc. Natl. Aci. USA. 98: 3220-3225. 43. Corbin, J. D., Sugden, P. H., West, L., Flockhart, D. A., Lincoln,T. M., and McCarthy, D. 1978. Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3'': 5''-monophosphate-dependent protein kinase. J. Biol. Chemi. 253: 3997-4003. 44. Kennelly, P. J., and Krebs E. G. 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphotases. The journal of Biol. Chemi. 266:15555-15558. 45. Berkowitz, L. A. and Gilman M. Z. 1990. Two distinct forms of active transcription factor CREB (cAMP response element binding protein). Proc. Natl. Aci. USA. 87:5258-5262. 46. Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L. J.-S., Taylor. S. S., Scott, J. D., and Korsmeyer, S. J. 1999. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell. 3: 413-422. 47. Lowell, B. B. 1996.Slimming with a leaner enzyme. Nature. 382:585-586. 48. Cummings, D. E., Brandon, E. P., Planas, J. V., Motamed, K. Idzerda, R. L., and Mcknight, G. S. 1996. Genetically lean mice result from targeted disruption of the RIIb subunit of protein kinase A. Nature. 382:622-626. 49. Uhler, M. D., Chrivia, J. C. and McKnight, G. S. 1986. Evidence for a second isoform of the catalytic subunit of cAMP-dependent protein kinase. J. Biol. Chemi. 261: 15360-15363. 50. Beebe, S. J. Oyen, O., Sanberg, M., Froysa, A., Hansson, M. and Jahnsen, T. 1990. Molecular cloning of a tissue-specific protein kinase (Cγ) from human testis-representing a third isoform for the catalytic subunit of cAMP-dependent protein kinase. Mol. Endocri. 4: 465-475. 51. Montminy, M. R. and Bilezikjian, L. M. 1987. Binding of a nuclear protein to the cyclic-AMP response element of somatostatin gene. Nature. 328:174-178. 52. Hoefeler, J. P., Meryer, T. E., Yun, Y., Jameson, J. L. and Habener, J. F. 1988. Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science. 242:1430-1433. 53. Shaywitz, A. J., and Greenberg, M. E. 1999 CREB: A stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68: 821-861. 54. Gonzalez, G. A.,and Montminy M. R. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at Serine 133. Cell. 59: 675-680. 55. Parker, D., Ferreri, K. NakaJima, T. Lamorte, V. J., Evans, R., Koerber, S. C., Hoeger, C., and Montiminy, M. R. 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16:694-703. 56. Sun, P., Enslen, H., Myung, P. S. and Maurer, R. A. 1994. Differential activation of CREB by Ca2+/ calmodulin-dependent protein kinase type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes and Development. 8: 2527-2539. 57. Iordanov, M., Bender, K., Ade, T., Schmid, W., Sachsenmaier C., Engel, K. Gaestel, M., Rahmsdorf, H. J., and Herrlich, P. 1997. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. The EMBO J. 16:1009-1022. 58. Du, K., and Montminy, M. 1998. CREB is a regulatory target for the protein kinae AKT/PKB. J. of Biol. Chemi. 273: 32377-32379. 59. Tan, Y., Rouse, J., Zhang, Aihua, Z., Cariati, S., Cohen, P., and Comb, M. J. 1996. FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO. J.15: 4629-4642. 60. Deak, M., Clifton, A. D., Lucocq, J.M. and Alessi, D. R. 1998. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediated activation of CREB. EMBO. J. 17: 4426-4441. 61. Chen, W., Yu, Y-L., Lee, S-F., Chiang, Yun-J., Chao, J-R., Huang, J-H., Chiong, J-H, Huang, C-J, Lai, M-Z, Yang-Yen, H-F., and Yen, J. J.-Y. 2001. CREB is one component of the binding complex of the Ces-2/E2A-HLF binding element and is an integral part of the IL-3 survival signal. Mol. Cell. Biol. 14: 4636-4646. 62. Barton, K., Muthusamy,N. Chanyangam, M., Fischer, Clendenin, C., and Leiden, J. M. 1996. Defective thymocyte proliferation and IL-2 production in transgenic mice expressing a dominant-negative form of CREB. Nature. 379: 81-85. 63. Rudolph, D., Tafuri, A., Gass, P., Hammerling, G., Arnold, B., and Schutz, G. 1998. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc. Nat. Acad. Sci. USA. 95:4481-4486. 64. Bonni, A., Brunet, A., West, A. E., Datta, R., Takasu, M. A., and Greenberg, M. E. 1999. Cell Survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and independent mechanisms. Science. 286:1358-1365. 65. Finkbeiner, S. 2000. CREB couples neurotrophin signals to survival messages. Nature. 25: 11-14. 66. Yamamoto, K. K., Gonzalez, G. A., Biggs III, W. H., and Montminy, M. R.1988. Phosphorylation-induced binding and transcription efficacy of nuclear factor CREB. Nature. 334:494-498. 67. Dwarki, V. J., Montminy, M. R., and Verma, I. M. 1990. Both the basic region and the ''leucine zipper'' domain of the cyclic AMP response element binding (CREB) protein are essential for transcriptional activation. EMBO. J. 9: 225-232. 68. Montminy, M. R. Sevarino, K. A. Wagner, J. A., Mandel, G., and Goodman, R. H. 1986. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc.Natl. Aci. USA. 83: 6682-6686. 69. Shepard, A. R., Zang, W., and Eberhardt, N. L. 1994. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells. J. Bio. Chemi. 269: 1804-1814 70. Ginty, D.D., Bonni, A., and Greenberg, M. E. 1994. Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell. 77: 713-725. 71. Sakamoto, K. M., Fraser, J. K., Lee, H.-J. J., Lehman, E., and Gasson, J. C. 1994. Granulocyte-Macrophage colony-stimulating factor and interleukin-3 signaling pathways converge on the CREB-binding site in the human egr-1 promoter. Mol. Cell. Biol. 14: 5975-5985. 72. Wilson, B. E., Mochon, E., and Boxer, L. M. 1996. Induction of bcl-2 Expression by phosphorylated CREB proteins during B-cell activation and rescue from apoptosis. Mol. Cell. Biol. 16:5546-5556. 73. Riccio A., Ahn, S., Davenport, C. M., Blendy, J. A., and Ginty, D. D. 1999. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science.286: 2358-2361. 74. Hemmings, B. A. 1997. AKT signaling- linking membrane events to life and death decisions. Science. 275: 628-630 75. Andjelkovice, M., Aless, D. R., Merier, R., Fernandez, A., Lamb, N. J. C. Frech, M., Cron, P., Cohen, P., Lucocq, J. M., and Hemmings, B. A. 1997. Role of Translocation in the activation and function of protein kinase B. J. Biol. Chemi. 272: 31515-31524. 76. Downd, J. 1998. Lipid-regulated kinase: some common themes at last. Science. 279:673-674. 77. Yano, S., Tokumitsu, H. and Soderling, T. R. 1998. Calcium promote cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature. 396: 584-587. 78. Kulik, G., Kilppel, A., and Weber, M. J. 1997. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and AKT. Mol. Cell. Biol. 17:1595-1606. 79. Wang, J.-M., Chao, J-R., Chen, W., Kuo, M.-L., Yen, J. J.-Y., and Yang-Yen, H.-F. 1999. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol. Cell. Biol. 19: 6195-6206. 80. Cross, D. A. E., Alessi, D. R., Cohen, D., Andjelkovich, M., Hemmings, B. A. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 378: 785-789. 81. Datta. S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E. 1997. AKT phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Mol. Cell. Biol. 91: 231-241. 82. Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science. 282:1318-1321. 83. Kim, A. H., Khursigara, G., Sun, X., Franke. T. F., and Chao, M. V. 2001. AKT phosphorylates and negatively regulates apoptosis signal-regulating kinase 1. Mol. Cell. Biol. 21: 893-901. 84. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L.S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E. 1999. AKT promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 96: 857-868. 85. Lee, S.-F., Huang H.-M., Chao, J.-R., Lin, S., Yang-Yen H.-F., and Yen, J. J.-Y. 1999. Cytokine receptor common b chain as a potential activator of cytokine withdrawal-induced apoptosis. Mol. Cell. Biol. 19:7399-7409. 86. Chao J.-R., Wang, J.-M., Lee, S.-F., Peng, H.-W., Lin, Y.-H., Chou, C.-H., Li, J.-C., Huang, H.-M., Chou, C.-K., Kuo, M-L., Yen, J. J.-Y., and Yang-Yen, H.-F. 1998. Mcl-1 is an immediate-early gene activated by the Granulocyte-Macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell. Biol. 18: 4883-4898. 87. Kinoshita, T., Shirouzu, M., Kamiya, A., Hashimoto, K., Yokoyama, S., and Miyajima, A. 1997. Raf/MAPK and rapamycin-sensitive pathways mediate the anti-apoptotic function of p21Ras in IL-3dependent hematopoietic cells. Oncogene. 15:619-627. 88. Kinoshita, T., Yokota, T., Arai, K.-i., and Miyajima, A. 1995. Suppression of apoptotic death hematopietic cells by signaling through the IL-3/GM-CSF receptors. The EMBO. J. 14: 266-275. 89. Terada, K., Kaziro, Y., and Satoh, T. 1995. Ras is not required for the Interleukin 3-induced proliferation of a mouse pro-B cell line, Ba/F3. J. Biol. Chemi. 270: 27880-27886. 90. Ohta, T., Kinoshita, T., Naito, M., Nozaki, T., Masutani, M., Tsuruo, T. and Miyajima, A. 1997. Requirement of the Caspase-3/CPP32 protease cascade for apoptotic death following cytokine deprivation in hematopoietic cells. J. Biol. Chemi. 272: 23111-23116.
|