跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 06:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃正怡
研究生(外文):ChengYi Huang
論文名稱:營養鹽濃度對於含梭狀芽孢桿菌之植種材料利用有機廢棄物產氫之影響
論文名稱(外文):The Effects of the Concentrations of Iron, Phosphate, and Organic Nitrogen on the Yield of Hydrogen Produced from Anaerobic Digestion of Organic Wastes Using Grass Compost as the Seeding Material
指導教授:張一岑
指導教授(外文):IChen Chang
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:81
中文關鍵詞:梭狀芽孢桿菌營養鹽
外文關鍵詞:Clostridium sp.nutrient
相關次數:
  • 被引用被引用:28
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
再生能源為自然界可以循環滋生的能源,由於價格昂貴且不普及,目前尚無法取代傳統的化石燃料,由於其污染性低且可減少溫室氣體的排放,所以仍有研究及發展的空間。氫氣是一種潔淨的替代能源,燃燒後產生水而不會生成其它有害副產物,經由燃料電池可直接轉換為電能利用,因此具有發展潛力,預計在公元2020年後,將可進入能源市場中。
產生氫能的方式很多,其中以生質氫能最受到重視。生質氫能是利用微生物將生質物或廢棄物的有機質分解轉化以產生氫氣,生質物產氫不僅可以潔淨的方式生產氫能,而且也可以同時處理廢棄物,極具資源再生的意義。而生物產氫主要是藉由行光合反應或醱酵作用的微生物來進行產氫,其中又以梭菌屬(Clostridium sp.)在厭氧醱酵過程中的高產氫能力最受矚目。Clostridium sp.是具有孢子的微生物,於一般堆肥熟成過程中,經由高溫菌作用的堆肥土溫度可高達60℃,所以在已熟成堆肥之中含有大量具有孢子的微生物,所以本研究也選用堆肥土作為植種材料之來源。
厭氧醱酵過程中除了可以解決固體廢棄物處理的問題外,其代謝過程中所產生的氫氣總能源效益也比甲烷高,而氫氣在厭氧醱酵過程中是一種中間產物。於厭氧醱酵代謝路徑中是進入產氫、產酸或者是產醇之階段即受許多因素的影響,包括植種材料前處理、環境因子中的pH值、溫度、營養鹽中鐵鹽、磷、有機氮之濃度等等,當改變其環境因子時也將可以改變氫氣的產率。
本研究主要為探討環境對有機廢棄物氫醱酵的影響,並以營養鹽中鐵鹽濃度、磷濃度和有機氮濃度為主要探討之環境因子。本研究先以前實驗(pre-test)之批次式厭氧產氫實驗,找出鐵鹽、磷、有機氮濃度之較適範圍為,當鐵鹽濃度為81 mg/L、磷濃度為1625 mg/L、有機氮濃度為563 mg/L時,在遲滯期(l)、產氫潛勢(Ps)、比產氫速率(Rs)有較佳的值產生。經由前實驗所找出的濃度條件以中心因子實驗設計(Full Factorial Central Composite Design)進行三者之實驗參數規劃,並再進行批次式厭氧產氫實驗。此時經過鐵鹽、磷、有機氮三者不同濃度變化之交互做作用後,根據實驗設計法及應答曲面法的歸納,當鐵鹽濃度為144 mg/L、磷濃度為1875 mg/L、有機氮濃度為625 mg/L時其產氫參數值為:遲滯期(l)為14小時、產氫潛勢(Ps)為75 mL/gTVS、比產氫速率(Rs)為450 mL/gTVS/day。由上述所找出之最適化條件,再經由重複試驗的再現性可得知實驗數據的可靠性;另外,當培養時間為14小時左右,pH值則急速下降,而氫的累積生成呈現急速上升之趨勢,相對的酸及醇的產生也漸漸同時形成。
Renewable energy is the energy extracted from the sources that can be regenerated or grown in nature. Due to higher prices and unpopularity, renewable energy sources are unable to replace conventional resources such as crude oil and coal. Renewable energy still worth of researching and development because it causes less pollution and emits less green house gases. Hydrogen is a clean form of alternative energy. After burning, it only produces clean water. Using fuel cell, electricity can be easily converted and readily utilized without going through conventional combustion-electricity generation process. Therefore, hydrogen has a great potential to replace conventional fuels and is expected to emerge into commercial energy market in 2020.
Hydrogen can be produced by a great many ways. Among those, the microbial hydrogen production receives greatest attention. The microbial process is to use microorganisms to convert organic substrate into hydrogen gas. The process not only produces cleaner fuel-hydrogen, but also recovers and reduces organic fractions in the waste. Thus, it is a process of energy generation and resource recovery.
Biohydrogen can be produced through photosynthesis and anaerobic digestion. In principle, photosynthesis produces more hydrogen, but anaerobic digestion has better potential to be commercialized because of simpler and inexpensive reactor design. Among many anaerobic hydrogen producing microorganisms, Clostridium sp. has the greatest potential. Because Clostridium sp. have spores, those bacteria can survive in the temperature of 60 o C and above such as those in the compost while most other bacteria cannot. Therefore, the cured compost contains a significant number of Clostridium sp. and can be used as the seeding materials. In this study, the compost is also used as the seeding material.
Anaerobic digestion is an old waste treatment process that has been used in treating municipal, agricultural and industrial wastewaters. In the anaerobic digestion process, hydrogen is an intermediate product during the metabolism of bacteria. Many environmental factors such as pretreatment of seeding material, pH, temperature, concentrations of iron, phosphate and organic nitrogen affects the directions of the metabolic pathways toward the productions of hydrogen, acids or alcohols.
The purpose of this study is to investigate the effects of nutrient concentrations to the hydrogen producing potential from the anaerobic digestion of organic waste. At first, the optimal concentrations of iron, phosphate and organic nitrogen were obtained independently from the batch experiment; then the optimal concentrations of 81 mg/L, 1625 mg/L and 563 mg/L were used as the references for the Full Factorial Central Composite Design to find the global optimal conditions. By using the methods of factorial design and response surface design, the optimal concentrations of iron, phosphate and organic nitrogen were found to be 144 mg/L, 1875 mg/L, and 625 mg/L respectively. The corresponding lag-phase time (l), specific hydrogen producing potential (Ps), specific hydrogen producing rate (Rs) were 14 hours, 75 mL/gTVS, and 450 mL/gTVS/day, respectively. When the lag-phase time reached 14 hours, hydrogen production increased rapidly, the pH value dropped drastically, and both the acids and alcohols began to increase.
目  錄
中文摘要i
英文摘要iii
誌謝v
目錄vi
表目錄ix
圖目錄x
第一章 緒論1
第二章 文獻回顧4
2.1 能源種類與發展4
2.1.1 能源的種類4
2.1.2 氫氣的應用6
2.2厭氧產氫微生物6
2.2.1厭氧生物產氫發展6
2.2.2厭氧產氫微生物特性7
2.3厭氧生物反應機制9
2.3.1有機物厭氧分解9
2.3.2厭氧醱酵生化反應11
2.4環境因子對厭氧產氫菌之影響13
2.4.1厭氧醱酵之環境條件13
2.4.2植種材料前處理15
2.4.3營養鹽對厭氧產氫菌之影響16
2.5實驗設計方法20
2.5.1中心組合因子實驗設計20
2.5.2應答曲面設計法21
第三章 研究設計與方法23
3.1 前言23
3.2研究設備及方法25
3.2.1批次式厭氧產氫實驗規劃25
3.2.2植種材料來源25
3.2.3厭氧產氫菌菌種前處理25
3.2.4血清瓶批次實驗器材及設備27
3.2.5實驗材料32
3.2.6批次式厭氧產氫前實驗(pre-test)33
3.2.7中心組合因子實驗設計35
3.2.8運用應答曲面法進行最佳組合因子分析37
3.2.9實驗分析方法37
3.3數據整理及分析44
3.3.1非線性迴歸分析44
3.3.2應答曲面分析45
3.3.3最適化條件46
第四章 結果與討論47
4.1 營養鹽濃度對植種材料厭氧產氫之影響47
4.1.1 鐵鹽濃度對植種材料厭氧產氫之影響47
4.1.2 磷濃度對植種材料厭氧產氫之影響52
4.1.3 氮鹽濃度對植種材料厭氧產氫之影響58
4.2 營養鹽間之濃度變化對厭氧菌分解有機固體廢棄物產氫之影響63
4.2.1 中心組合因子實驗設計與應答曲面分析之批次式厭氧產氫實驗63
4.2.2中心組合因子規劃之批次式厭氧產氫重複實驗63
4.2.3厭氧產氫批次實驗之酸與醇的生成關係73
第五章 結論與建議75
參考文獻78
附錄一 氫氣圖譜
附錄二 揮發性有機酸圖譜
附錄三 醇類圖譜
參考文獻
Akashah, M., Yoshida, M., Watanabe, M., Nakamura, M., and Matsumoto, J., 1997, “Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems”, 8th International Conf. On Anaerobic Digestion, vol. 1, pp. 261-268.
APHA, AWWA and AEF, 1995, Standard methods for the Examination of Water and wastewater, 19th edition, Washington, DC, USA
Bowles, L. K., and Ellefson, W. L., 1985, “Effects of Butanol on Clostridium acetobutylicum”, Appl. Envir. Microbiol., vol. 50, no. 5, pp. 1165-1170.
Dabrock, B., Bahl, H., and Gottschalk, G., 1992, “Parameters affecting solvent production by Clostridium pasteurianum”, Appl. Environ. Microbiol., vol. 58, no. 4, pp. 1233-1239.
Gottschalk, G., 1986, Bacterial Metabolism, pp. 208-282, Spring-Verlag New York.
Grupe, H., and Gottschalk, G., 1992, “Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction”, Appl. Envir. Microbiol., vol. 58, no. 12, pp. 3896-3902.
Guwy, A. J., Hawkes, F. R., Hawkes, D. L., and Rozzi, A. G., 1997, “Hydrogen production in a high rate fluidized bed anaerobic digester”, Water Res., vol. 31, no. 6, pp. 1291-1298.
Holt, R. A., Stephens, G. M., and Morris, G., 1984, “Production of solvents by Clostridium acetobutylicum cultures maintained at neutral pH”, Appl. Envir. Microbiol., vol. 48, no. 6, pp. 1166-1170.
Jones, D. T., van der Westhuizen, A., Long, S., Allcock, E. R., 1982,“Solvent production and morphological changes in Clostridium acetobutylicum”, Appl. Envir. Microbiol., vol. 43, pp. 1434-1439.
Kim, B. H., Bellows, P., Datta, R., and Zeikus, J. G., 1984, “Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields”, Appl. Envir. Microbiol., vol. 48, no. 4, pp. 764-770.
Lay, J. J., Lee, Y. J., and NOIKE, T., 1999,“Feasibility of biological hydrogen production from organic fraction of municipal solid waste”, Wat. Res., vol. 33, no. 11, pp. 2579-2586.
Lay, J. J., 2000, “Modeling and optimization of anaerobic digested sludge converting starch to hydrogen”, Biotechnology and Bioengineering, vol. 68, no. 3, pp. 270-277.
Naoaki, K., Akiko, M., and Koichi, K., 1997, “Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria”, 8th International Conf. On Anaerobic Digestion, vol. 2, pp. 383-390.
Owen, W. F., Stuckey, D. C., Healy, J. B., Young L. Y., and McCarty, P. L., 1979, “Bioassay for monitoring biochemical methane potential and anaerobic toxicity”, Water Res., vol. 13, pp. 485-492.
Splarling, R., Risbey, D. and Poggi-Varaldo H. M., 1997,“Hydrogen production from inhibited anaerobic composters”, Int. J. Hydrogen Energy, vol. 22, no. 6, pp. 563-566.
Stal, L. J., Moezelaar, R., 1997, “Fermentation in cyanobacteria”, FEMS Microbiology Reviews 21, pp. 179-211.
Taguchi, F., Chang, J., Takiguchi, S., Morimoto, M., 1992,“Efficient hydrogen production from starch a bacterium isolated from termites”, J. Ferment. Bioeng., vol. 73, pp. 244-245.
Thauer, R. K., Jungermann, K., and Decker, K., 1997, “Energy conservation in chemotrophic anaerobic bacteria”, Bacteriol. Rev., vol. 41, pp. 100-180.
Ueno, Y., Kawai, T., Sato, S., Otsuka, S., and Morimoto, M., 1995, “Biological production of hydrogen from cellulose by natural anaerobic microflora”, J. Fermentation and Bioengineering, vol. 79, no. 4, pp. 395-397.
Yan, R. T., Zhu, C. X., Golemboski, C., and Chen J. S., 1988,“Expression of solvent-forming enzymes and onset of solvent production in batch culture of Clostridium beijerinckii (“Clostridium butyricum”) ”, Appl. Environ. Microbiol., vol. 54, no. 3, pp. 624-648.
Yokoi, H., Ohkawara, T., Hirose, J., Hayashi, S., and Takasaki, Y., 1995, “Characteristics of hydrogen-production by aciduric Enterobacter-aerogenes strain Ho-39”, J. Ferm. Bioeng, vol. 80, no. 6, pp. 571-574.
Zwietering, M. H., Jongenburger, I., Rombouts, F. M., and Van’t Riet, K., 1990, “Modeling of the bacterial growth curve”, Appl. Envir. Microbiol., vol. 56, no. 6, pp. 1875-1881.
Brooks, Butel, Ornston, 1994,醫用微生物學,吳柏林譯,藝軒圖書出版社,台北。
Montgomery, 1998,實驗設計與分析,黎正中譯,高立圖書有限公司,台北。
Sawyer, McCarty, 1992,環境工程化學,謝立生、黃建華譯,科技圖書股份有限公司。
王三郎,1997,應用微生物學,二版,高立圖書有限公司,台北。
白明德,1999,厭氧生物產氫機制與程序操作策略之研究,國立成功大學,碩士論文。
林秋裕,1997,環境工程微生物學,二版,國彰出版社,台中。
林明正,2000,CSTR厭氧產氫反應槽之啟動及操作,逢甲大學,碩士論文。
李逸鈞,1996,實驗設計法應用於黃金修飾電極之電觸媒特性研究,國立成功大學,碩士論文。
張仁福,1997,環境微生物學,初版,文京圖書有限公司,台北。
曾怡禎,2001,“本土性梭菌屬產氫菌株之生理特性”,國科會生物產氫研究成果發表會,頁2-1∼2-6,台南,4月24日。
劉英俊,1996,最新微生物應用工業,四版,中央圖書出版社,台北。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top