跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林文智
研究生(外文):Wen-Chin Lin
論文名稱:多納針闊葉林土壤種子庫組成及苗木生長與生理對光環境的反應
論文名稱(外文):Composition of soil seed bank and the responses of growth and physiology in seedlings to light environment in broadleaf-coniferous forest of Dona
指導教授:郭耀綸老師
指導教授(外文):Yau-Lun Kuo
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:98
中文關鍵詞:土壤種子庫光合作用先驅樹種耐蔭種
外文關鍵詞:soil seed bankphotosynthesispioneer speciesshade tolerant species
相關次數:
  • 被引用被引用:4
  • 點閱點閱:395
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
森林植物不同的更新策略會影響森林植群演替的過程及結果,因此研究不同植物間的更新方式,將有助於了解森林的動態變化,其中土壤種子庫為植物重要的更新策略之一。本研究在多納針闊葉林一公頃永久樣區中,進行植群及土壤種子庫組成的調查,並探討不同演替階段樹種山楜椒、光葉柃木及錐果櫟的生長及生理在不同光環境下的反應。多納針闊葉林以長尾柯、威氏帝杉、白花八角、錐果櫟及紅楠為優勢種,其中威氏帝杉族群徑級結構呈J型,顯示無法在林下持續更新;其餘優勢樹種呈反J型,顯示可在林下形成大量稚樹庫並持續更新及生長。多納針闊葉林土壤種子庫的組成以先驅種為主,其中先驅種計 15種共716株,演替後期種只發芽1種共11株,兩者呈顯著對比。以生長型而言,此土壤種子庫的組成以草本植物及灌木為主,數量分別佔總數的7.4 %及81%,如山楜椒、霧社懸勾子及光葉柃木等,其中光葉柃木發芽1,129株為最多,佔發芽種子總數的52%,且從土壤表層至土深30 cm各層次中均有出現。現存森林的植物組成中僅有紅楠及光葉柃木2種也出現於土壤種子庫中,但紅楠為當年生的種子,可能於短時間內發芽而成苗木庫,顯示多納針闊葉林演替後期優勢樹種並非以土壤種子庫為其更新機制。本研究另一試驗比較土壤種子庫在人工林孔隙與林下不同環境發芽數的差異,發現在孔隙環境土壤種子庫發芽數量為林下環境的2.6倍,顯示孔隙形成有利於土壤種子庫種子的發芽。此外,森林中多樣的微環境將顯著影響不同演替階段苗木的生長與存活,尤其是光環境。在本研究的全光、孔隙及林下環境中,先驅種山楜椒在全光下的最大光合作用率及樹高相對生長率分別為8.7 μmol m-2s-1及18.6%,顯著高於耐蔭種錐果櫟的6.6 μmol m-2s-1及2.2 %,顯示山楜椒可充份利用高光資源。在林下環境,錐果櫟及山楜椒的暗呼吸率、光補償點及最大光合作用率均無顯著差異,表示錐果櫟在林下環境的生理表現並無優勢,可能有其它的機制使其在林下低光環境有競爭的優勢。廣泛分佈種光葉柃木在全光環境的樹高相對生長率與先驅種山楜椒間無顯著差異;在林下環境光葉柃木的暗呼吸率及光補償點顯著小於另2樹種,最大光合作用率則顯著最高,因此這些特性有利於光葉柃木在全光及林下環境的生長。本研究由林下轉變為孔隙所增加的光量資源,可顯著促進山楜椒、光葉柃木及錐果櫟的生長。
關鍵字:土壤種子庫、光合作用、先驅樹種、耐蔭種
Different regeneration strategies for forest plants will effect the future succession of forest community. It is helpful to understand the dynamics of the forest by investigating the various regeneration methods of plants. The soil seed bank is one of the important regeneration strategies. Through this research of 1 ha area of research site, we try to check the composition of the soil seed bank in the broadleaf-coniferous forest of Dona, and investigate the responses of growth and physiology in three different light environments using Litsea cubeba, Eurya nitida var. nitida and Cycolbalanopsis longinux as materials. The Dona forest were dominated by Castanopsis carlesii、Pseudotsuga wilsoniana、Illicium tashiroi、Cyclobalanopsis longinux and Machilus thunbergii. The J shape of diameter structure of Pseudotsuga wilsoniana reveals this specie can not regenerate in this forest. Another species of dominant species in Dona forest present opposite J shape of diameter structure and can regenerate continuously by forming a lot of seedlings. The soil seed band is dominated by pioneer species, including 15 species、716 seedlings of pioneers and 1 species、11 seedlings of late successional plants. Both shows outstanding different. The soil seed bank has a higher proportion of herbs and shrubs, being 7.4% and 81% of all germinated seeds respectively, including Litsea cubeba、Rubus linearifolius and Eurya nitida var. nitida. Eurya nitida var. nitida has 1129 germinated seeds, involves 52% of all germinated seeds and spreads from 0-30 cm of soil. Machilus thunbergii and Eurya nitida var. nitida of Dona forest were the only species appearing in the soil seeds bank. But Machilus thunbergii is produced in this year and may germinate soon to form seedling bank. So the regeneration strategy of the dominant plants of late successional forest is not from the soil seed bank. This research try to compare the difference of germinated soil numbers of soil seed bank between gap and understory environment of forest in man-made forest. It reveals the numbers of gap environment is 2.6 times to the ones of understory environment. So gap environment can advance the germination of seeds in soil seed bank. The various microenvironments in the forest, especially the light environment, have a severe impacts on the growth and survival of different successional seedlings.In the research environment of high light , gap and understory, the Amax and relative growth rate of tree height per month in Litsea cubeba is obvious higher than the other species in high light environment, being 8.7 μmol m-2s-1and 18.6%, respectively. It is obvious higher than Cyclobalanopsis longinux, being 6.6μmol m-2s-1 and 2.2%. It shows Litsea cubeba can grow well, and utilize light resources efficiently in a high light environment. However, the dark respiration, light saturation point, and maximum photosynthetic rate of Litsea cubeba and Cycolbalanopsis longinux has no conspicuous difference. The result reveals that Cycolbalanopsis longinux has no better physiological characteristics in understory of the forest, but could have other advantageous mechanisms for flourishing growth and development. The relative growth rate of Eurya nitida var. nitida in tree height is 18.8% in high light environment, and do not differs significantly from Litsea cubeba. In the understory of forest, the dark respiration and light saturation point of Eurya nitida var. nitida are lower than the other species, but the photosynthesis is higher significantly. These characteristics can enhance survival rate of Eurya nitida var. nitida. These representations indicate that Eurya nitida var. nitida can grow well in the understory of forest or in a full light environment. The outcome shows that changes in light from gap formation will be beneficial for the growth and survival of different successional species.
Keyword: soil seed bank, photosynthesis, pioneer species, Shade tolerant species
中文摘要……………………...………………………………. Ⅰ
英文摘要…………………………….…………………………Ⅲ
誌謝……………………………………………………...…….VI
圖表索引…………………………………………………..…..IX
壹、前言…………………………………………………………1
貳、前人研究……………………………………………...…….6
參、材料與方法…………………………………………..……12
一、 試驗地點概述…………………...………………12
二、 植群調查…………………………………...……16
三、 土壤種子庫……………………………...………17
四、 山楜椒、光葉柃木及錐果櫟苗木生長及生理對
光環境的反應…………………………………..20
肆、結果…………………………..……….…………………..23
一、 植群調查………………………...………………23
二、 土壤種子庫…….…………...……………………27
三、 不同光環境對山楜椒、光葉柃木及錐果櫟苗木
生長的影響………………………………….…..39
四、 不同光環境對山楜椒、光葉柃木及錐果櫟苗木
光合作用性狀的影響………………………...…44
伍、討論……………………………………...………………..51
陸、結論………………………………………...……………..68
柒、引用文獻…………………………………...……………..70
附錄一、多納針闊葉林植物名錄…..……….………………..81
附錄二、多納針闊葉林植群種類及IVI值……....…………..84
附錄三、多納針闊葉林IVI排名前20種樹種族群徑級結構.88
附錄四、多納針闊葉林土壤種子庫植物名錄...……………..92
附錄五、多納針闊葉林土壤種子庫各樣區種子發芽數量
及種類……………………………………………..94
1.王世彬、林讚標、簡慶德 (1995) 林木種子儲藏性質的分類。 林業試驗所研究報告季刊10(2):255-276。
2.王相華 (1995) 不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊10(4):405-418。
3.王相華、郭耀綸、潘順勇 (1997) 墾丁高位珊瑚礁森林樹冠疏開對二十種樹木種子發芽的影響。台灣林業科學 12(3):299-307。
4.台灣省林業試驗所 (1998) 台灣森林土壤調查報告(二)林業試驗所─六龜試驗林。林業叢刊第77號。
5.周文郅 (1999) 關刀溪森林生態系孔隙更新之研究。國立中興大學植物學系碩士論文。
6.洪富文、程煒兒、游漢明、馬復京 (1994a) 光度與養分對於福山次生樟儲林苗木生長的影響。林業試驗所研究報告季刊 9(3): 257-265。
7.洪富文、游漢明、馬復京、張慧玲 (1994b) 福山次生樟櫧林的果實雨。 林業試驗所研究報告季刊 9(4):339-347。
8.陳永修 (1992) 多納溫泉溪上游集水區植群生態之研究。國立台灣大學森林學研究所資源保育組碩士論文。
9.陳明義、周文郅、蔡進來 (2000) 關刀溪森林生態系之倒木孔隙更新。林業研究季刊22(1):23-32。
10.許博行、張安瑮 (2001) 二氧化碳濃度與溫度對樟樹苗木生長及光合作用之影響。台灣林業科學 16(1):11-23。
11.許博行、盧昕玗 (1998) 二氧化碳與溫度對木荷苗木生長、葉綠素螢光反應與核酮醣雙磷酸羧化/加氧酵素之影響。中華林學季刊 31(2):141-151。
12.郭耀綸 (1995) 六種固有景觀樹種苗木耐蔭性研究。技術學刊10(1):103-109。
13.郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊30(2):165-185。
14.郭耀綸、楊月玲、吳祥鳴 (1999) 墾丁熱帶森林六種樹苗生長性狀及光合作用對光量的可塑性。台灣林業科學14(3):255-273。
15.郭耀綸 (2000) 南仁山熱帶低地雨林白榕冠層及林下植物的光合作用。台灣林業科學15(3):351-363。
16.張乃航 (1996) 光照效應對台灣赤楊、山黃麻及構樹種子發芽的影響。台灣林業科學11(2):195-199。
17.張乃航、馬復京、游漢明、許原瑞 (1998) 福山地區次生闊葉林土壤種子庫及幼苗動態。台灣林業科學13(4):279-289。
18.張和明 (1996) 台灣北部福山地區天然闊葉林土壤種子庫與樹種更新之研究。國立台灣大學植物學研究所碩士論文。
19.黃進輝、郭幸榮 (1996) 烏心石苗木形態於不同光度下之變化。台大農學院實驗林研究報告10(1):49-65。
20.葉慶龍、范貴珠 (1997) 大武台灣油杉自然保護區之植群生態研究。國立中興大學實驗林研究彙刊19(1):79-100。
21.劉正平、陳朝圳、范貴珠 (1991) 海岸林樹種需光量之研究。農專學報32:103-108。
22.劉棠瑞、蘇鴻傑 (1983) 森林植物生態學。台灣商務書館。354-394頁。
23.謝長富、孫義方、謝宗欣、王國雄 (1991) 墾丁國家公園亞熱帶雨林永久樣區之調查研究。保育研究報告第76號。
24.謝長富、孫義方、王國雄、蘇夢淮 (1993) 墾丁國家公園亞熱帶雨林永久樣區之調查。保育研究報告第87號。
25.簡慶德、楊佳如 (1997) 長葉木薑子種子成熟度影響種子的儲藏能力。林業試驗所研究報告季刊 12(3):346-355。
26.蘇鴻傑 (1993) 森林發育動態與生態綠化。科學農業41:187-191。
27.Amezquita, P. (1998) Light environment affects seedling performance in Psychotria aubletiana (Rubiaceae), a tropical understory shrub. Biotropica 30(1):126-129.
28.Baker, H. G. (1989) Some aspects of the natural history of seed banks. In M. A. Leck, V. T. Parker and R. L. Simpson, Ecology of soil seed bank, 9-21. Academic Press, San Diego, USA.
29.Barnes, B. V., D. R. Zak, S. R. Denton and S. H. Spurr (1997) Regeneration ecology. Forest ecology, 94-121. John Wiley & Sons, Inc, USA.
30.Barton, A. M., N. Fetcher and A. Redhead (1989) The relationship between freefall gap size and light flux in a neotropical rain forest in Costa Rica. Journal Tropical Ecology 5:437-439.
31.Baskin, J. M. and C. C. Baskin (1989) Physiology of dormancy and germination in relation to seed bank ecology. In M. A. Leck, V. T. Parker and R. L. Simpson, Ecology of soil seed bank, 53-66. Academic Press, San Diego, USA.
32.Bassow, S. L. and F. A. Bazzaz (1997) Intra- and inter-specific variation in canopy photosynthesis in a mixed deciduous forest. Oecologia 109:507-515.
33.Bazzaz, F. A. and R. W. Carlson (1982) Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54:313-316.
34.Bigwood, D. W. and D. W. Inouye (1988) Spatial pattern analysis of seed banks: an improved method and optimized sampling. Ecology 69(2):497-507.
35.Bongers, F., J. Popma and S. Iriarte-Vivar (1988) Response of Cordia megalantha seedlings to gap environments in a Mexican tropical rainforest. Functional Ecology 2:379-390.
36.Brokaw, N V. L. (1989) Species composition in gaps and structure of a tropical forest. Ecology 70(3):538-541.
37.Bulter, B. J. and R. L. Chazdon (1998) Species richness, spatial variation, and abundance of the soil seed bank of a secondary tropical rain forest. Biotropica 30(2):214-222.
38.Canham, C. D. (1989) Different responses to gaps among shade tolerant tree species. Ecology 70:548-550.
39.Chazdon, R. L. (1992) Photosynthetic plasticity of two rain forest shrubs across natural gap transects. Oecologia 92:586-595.
40.Chazdon, R. L., R. W. Pearcy, D. W. Lee and N. Fetcher (1996) Photosynthetic responses of tropical forest plants to contrasting light environments. In S. S. Mulkey, R. L. Chazdon and A. P. Smith, Tropical forest plant ecophysiology, 5-55. Chapman&Hall, New York, USA.
41.Cintra, R. and V. Horna (1997) Seed and seedling survival of the palm Astrocaryum murumura and legume tree Dipteryx micrantha in gaps in Amazonian forest. Journal of Tropical Ecology 13:257-277.
42.Dalling, J. W., M. D. Swaine and N. C. Garwood (1994) Effect of soil depth on seedling emergence in tropical soil seed-bank investigations. Functional Ecology 9:119-121.
43.Dalling, J. W., M. D. Swaine and N. C. Garwood (1997) Soil seed bank community dynamics in seasonally moist lowland tropical forest, Panama. Journal of Tropical Ecology 13:659-680.
44.Denslow, J. S., J. C. Schultz, P. M. Vitousek and B. R. Strain (1990) Growth response of tropical shrubs to treefall gap environments. Ecology 71:165-179.
45.Depuy, J. M. and R. L. Chazdon (1998) Long-term effects of forest regrowth and selective logging on the seed bank of tropical forests in NE Costa Rica. Biotropica 30(2):223-237.
46.Drobyshev, I. V. (1999) Regeneration of Norway spruce in canopy gaps in Sphagnum-Myrtillus old-growth forests. Forest Ecology and Management 115:71-83
47.Fenner, M. (1980) Germination tests on thirty-two east African weed species. Weed Research 20:135-138.
48.Fetcher, N., B. R. Strain and S. F. Oberbauer (1983) Effects of light regime on the growth, leaf morphology, and water relations of seedlings of two species of tropical trees. Oecologia 58:314-319.
49.Foster, S. A. (1986) On the adaptive value of large seeds for tropical moist forest trees: a review and synthesis. The Botanical Review 52:260-299.
50.Garcia-Nunez, C., A. Azocar and F. Rada (1995) Photosynthetic acclimation to light in juveniles of two cloud forest tree species. Trees 10:114-124.
51.Garwood, N. C. (1989) Tropical soil seed banks: a review. In M. A. Leck, V. T. Parker and R. L. Simpson, Ecology of soil seed bank, 149-209. Academic Press, San Diego, USA.
52.Gross, K. L. (1990) A comparison of methods for estimating seed numbers in the soil. Journal of Ecology 78:1079-1093.
53.Higo, M., A. Shinohara and S. Kodama (1995) The regeneration behavior of major component species in the secondary forest dominated by Pinus densiflora and Quercus serrata in central Japan. Forest Ecology and Management 76:1-10.
54.Houle, G. (1998) Seed dispersal and seedling recruitment of Betula alleghaniensis: spatial inconsistency in time. Ecology 79(3):807-818.
55.Huante, P. and E. Rincon (1998) Responses to light changes in tropical deciduous woody seedlings with contrasting growth rate. Oecologia 113:53-66.
56.Kalamees, R. and M. Zobel (1998) Soil seed bank composition in different successional stages of a species rich wooded meadow in Laelatu, western Estonia. Acta Oecologica 19(2): 175-180.
57.Kamaluddin, M. and J. Grace (1993) Growth and photosynthesis of tropical forest tree seedlings (Bischofia javanica Blume) as influenced by a change in light availability. Tree Physiology 13:189-201.
58.Lambers, H. and H. Pooter (1992) Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23:187-261.
59.Lambers, H., F. S. Chapin and T. L. Pons (1998) Plant physiology ecology. Chernow Editorial Sercices, New York, USA.
60.Langenheim, J. H., C. B. Osmond, A. Brooks and P. J. Ferrar (1984) Photosynthetic responses to light in seedlings of selected Amazonian and Australian rainforest tree species. Oecologia 63:215-224.
61.Lawton, R. O. and F. E. Putz (1988) Natural disturbances and gap-phase regeneration in a wind-exposed tropical cloud forest. Ecology 69:764-777.
62.Lawton, R. O. (1990) Canopy gaps and light penetration into a wind-exposed tropical lower mountain rain forest. Canadian Journal Forest Research 20:659-667.
63.Leishman, M. R. and M. Westoby (1998) Seed size and shape are not related to persistence in soil in Australia in the same way as in Britain. Functional Ecology 12:480-485.
64.Lorimer, C. G. (1989) Relative effects of small and large disturbances on temperate hardwood forest structure. Ecology 70:565-567.
65.Metcalfe, D. J. and P. J. Grubb (1997) The responses to shade of seedlings of very small-seeds tree and shrub species from tropical rain forest in Singapore. Functional Ecology 11:215-221.
66.Oberbauer, S. F., D. A. Clark, D. B. Clark and M. Quesada (1989) Comparative analysis of photosynthetic light environments within the crowns of juvenile rain forest trees. Tree Physiology 5:13-23.
67.Orwig, D. A. and M. D. Abrams (1995) Dendroecological and ecophysiological analysis of gap environments in mixed-oak understoreys of northern Virginia. Functional Ecology 9:799-806.
68.Osunkoya, O. O. and J. E. Ash (1991) Acclimation to a change in light regime in seedlings of six Australia rainforest tree species. Australian Journal of Botany 39:591-605.
69.Pearcy, R. W. (1998) Acclimation to sun and shade. In A. S. Ragharendra, Photosynthesis, 250-263. Cambridge Univ, Cambridge.
70.Popma, J. and F. Bongers (1991) Acclimation of seedlings of three Mexican tropical rainforest tree species to change in light availability. Journal of Tropical Ecology 7:85-97.
71.Riddoch, I., J. Grace, F. E. Fesahun, B. Riddoch and D. O. Lapidos (1991) Photosynthesis and successional status of seedlings in a tropical semi-deciduous rain forest in Nigeria. Journal of Ecology 79:491-503.
72.Rijks, M. H., E. Malta and R. J. Zagt (1998) Regeneration through sprout formation in Chlorocardium rodied (Lauraceae) in Guyana. Journal of Tropical Ecology 14:463-475.
73.Simpson, R. L., M. A, Leck and V. T. Parker (1989) Seed banks: general concepts and methodological issue. In M. A. Leck, V. T. Parker and R. L. Simpson, Ecology of soil seed bank, 3-8. Academic Press, San Diego, USA.
74.Smith, A. P., K. P. Hogan and J. R. Idol (1992) Spatial and temporal patterns of light and canopy structure in a lowland tropical moist forest. Biotropical 24:503-511.
75.Teketay, D. and A. Granstrom (1997) Seed viability of afromontane tree species in forest soils. Journal of Tropical Ecology 13:81-95.
76.Tekle, K. and T. Bekele (2000) The role of soil seed banks in the rehabilitation of degraded hillslopes in southern wello, Ethiopia. Biotropica 32(1):23-32.
77.Terheerdt, G. N. J., G. L. Verweij, R. M. Bekker and J. P. Bakker (1996) An improved method for seed-bank analysis: seedling emergence after removing the soil by sieving. Functional Ecology 10:144-152.
78.Traba, J., C. Levassor and B. Peco (1998) Concentrating samples can lead to seed losses in soil bank estimations. Functional Ecology 12:975-9 82.
79.Turnbull, M. H., D. Doley and D. J. Yates (1993) The dynamics of photosynthetic acclimation to changes in light quantity and quality in three Australian rainforest tree species. Oecologia 94:218-228.
80.Van Der Meer, P. J., P. Dignan and A. G. Saveneh (1999) Effect of gap size on seedling establishment, growth and survival at three years in mountain ash (Eucalyptus regnans F. Muell) forest in Victoria , Austrlia. Forest Ecology and Management 117:33-42.
81.Victor, R.and G. Jose G(1992)Vegetation and soil seed bank of successional stages in tropical lowland deciduous forest. Journal of Vegetation Science 3:617-624.
82.Wallace, L. L. and E. L. Dunn (1980) Comparative photosynthesis of three gap phase successional tree species. Oecologia 45:331-340.
83.Wesson, G. and P. F. Wareing (1969) The role of light in the germination of naturally occurring populations of buried weed seeds. Journal of Experimental Botany 20:402-413.
84.Whitmore, T. C. (1989) Canopy gaps and two major groups of forest trees. Ecology 70:536-538.
85.Whitmore, T. C. (1990) An introduction to tropical rain forest. Oxford University Press, Oxford. 226pp.
86.Witkowski, E. T. F. and R. D. Garner (2000) Spatial distribution of soil seed banks of three African savanna woody species at two constrasting sites. Plant Ecology 149:91-106.
87.Yamamoto, S. I. (1992) Gap characteristics and gap regeneration in primary evergreen broad-leaved forest of western Japan. Botany Magazine of Tokyo 105:29-45.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 12.郭耀綸 (1995) 六種固有景觀樹種苗木耐蔭性研究。技術學刊10(1):103-109。
2. 11.許博行、盧昕玗 (1998) 二氧化碳與溫度對木荷苗木生長、葉綠素螢光反應與核酮醣雙磷酸羧化/加氧酵素之影響。中華林學季刊 31(2):141-151。
3. 〈鮑照的「贈故人馬子喬六首」〉,唐海濤著,《中華文化復興月刊》第二十一卷第二期。
4. 9.陳明義、周文郅、蔡進來 (2000) 關刀溪森林生態系之倒木孔隙更新。林業研究季刊22(1):23-32。
5. 13.郭耀綸、吳祥鳴 (1997) 黃心柿、毛柿及大葉山欖苗木光合作用與形態對不同光量的可塑性。中華林學季刊30(2):165-185。
6. 7.洪富文、游漢明、馬復京、張慧玲 (1994b) 福山次生樟櫧林的果實雨。 林業試驗所研究報告季刊 9(4):339-347。
7. 6.洪富文、程煒兒、游漢明、馬復京 (1994a) 光度與養分對於福山次生樟儲林苗木生長的影響。林業試驗所研究報告季刊 9(3): 257-265。
8. 2.王相華 (1995) 不同光度對四種季風雨林樹種幼苗生長及形態之影響。林業試驗所研究報告季刊10(4):405-418。
9. 〈鮑照模擬詩的成就〉,唐海濤著,《國立中央圖書館館刊》第二十卷第二期。
10. 〈鮑照詩中之蟬聯句〉,唐海濤著,《中外文學》第十三期第九卷。
11. 〈鮑照詩中的對偶句〉,唐海濤著,《中華文化復興月刊》第二十一卷第三期。
12. 〈鮑照詩文中所表現的鄉土家人之戀〉,唐海濤著,《中華文化復興月刊》第二十一卷第四期。
13. 〈鮑照詩小論〉,呂正惠著,《文學評論》第六期。
14. 〈鮑照其人其詩〉,菊韻著,《今日中國》第二十七期。
15. 〈鮑照的「擬行路難」(下)〉,唐海濤著,《國立中央圖書館館刊》第二十卷第一期。