跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 12:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:NerieT.Sanz
論文名稱:台灣新發現之羅勒嵌紋病之研究
論文名稱(外文):Studies on a Newly Discovered Mosaic Diseaseof Bush Basil (Ocimum basilicum L.) in Taiwan
指導教授:陳滄海陳滄海引用關係賴博永賴博永引用關係
指導教授(外文):Tsang-Hai ChenPo-Yung Lai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:66
中文關鍵詞:羅勒九層塔嵌紋病Fabavirus屬Broad bean wilt virus
外文關鍵詞:Bush basilmosaicFabavirusBroad bean wilt virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
羅勒(Ocimum basilicum L.) 俗稱九層塔,為台灣地區常見之香辛蔬菜,本文記載在南台灣高屏地區田間,發現一種病毒性的羅勒新病害,受感染的植株葉片呈現嵌紋及皺縮之病徵。將單斑分離所得之病毒機械接種於5科21種植物,結果計有藜科植物3種及茄科植物1種受感染,而且接種之羅勒幼苗呈現與田間相類似的病徵。棉蚜(Aphis gossypii)及桃蚜(Myzus persicae)等兩種蚜蟲可以非持續型方式媒介傳播此病毒。以電顯觀察部分純化病毒可見到直徑約30 nm之球型粒子。病毒之物理性質包括熱不活化溫度介於60-70℃、耐稀釋度為10-3-10-4、室溫下耐保存性為8天、而-70℃下其活性則可維持達10週以上。部分純化病毒經十二烷基硫酸鈉聚丙烯胺膠體電泳(sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE)可測得分子量分別為42和26 kDa之兩種蛋白質。凝膠雙向免疫擴散反應或酵素免疫分析法(ELISA)試驗結果顯示本病毒可與Broad bean wilt virus 抗體發生特異性反應但卻不與Cucumber mosaic virus 抗體發生反應。依據病毒粒子型態及大小、蚜蟲傳播模式、血清學及鞘蛋白特性等分類特徵,初步判定此病毒應屬Comoviridae科Fabavirus屬之Broad bean wilt virus;此為台灣地區田間羅勒病毒病害之首度報導。

Abstract
An unusual disease occurred in bush basil (Ocimum basilicum L.) fields mainly in Pingtung County and to a lesser extent in Kaohsiung County in southern Taiwan. Foliar symptoms of affected plants included mosaic and leaf distortion. A virus isolate was obtained from the symptomatic basil and subsequently tested for its infectivity on 21 plant species from 5 families by mechanical inoculation. Three species in Chenopodiaceae and one of the plants from Solanaceae were infected. Inoculation of the isolated virus on basil seedling induced symptoms similar to those observed from the fields. Two aphid species, Aphis gossypii Glover and Myzus persicae Sulzer, were found to transmit the virus in a non-persistent manner to healthy basil seedlings. The virus was partially purified. By electron microscopy, isometric virus particles, approximately 30 nm in diameter, were visible. The thermal inactivation point of the virus isolate was 60-70C, dilution end-point was 10-3 to 10-4 and the longevity in vitro of infected sap was 8 days at 24C and more than 10 weeks at -70C. Two protein species with molecular weights of about 42 and 26 kDa were detected after partially purified virus was denatured with sodium dodecyl sulfate (SDS) and analyzed by polyacrylamide gel electrophoresis. The partially purified virus and crude sap from infected Chenopodium quinoa leaves reacted specifically with Broad bean wilt virus (BBWV) antiserum in SDS-agar immunodiffusion test but not with Cucumber mosaic virus (CMV) antiserum. In indirect enzyme linked immunosorbent assay (ELISA), CMV polyclonal antibody did not show correlation with partially purified preparations. The virus was identified as Broad bean wilt virus a member of the Fabavirus genus belonging to the family Comoviridae on the basis of its particle morphology and size, manner of aphid transmission, serology and capsid protein. This was the first report on the natural occurrence of a plant virus of the genus Fabavirus to cause a disease on bush basil in Taiwan.

Table of Contents
Abstract in English……………………………………………...…vi
Abstract in Chinese………………………………………...….....viii
Acknowledgements………………………………………….….…ix
Table of Contents………………………………………….…...…xii
List of Tables…………………………………………………..…xiv
List of Illustrations…………………………………………..……xv
I.Introduction……………………………………………….…1
II.Materials and Methods………………………………………7
A. Virus source and isolation…………………….…..….7
B. Plants and growing conditions………………………..8
C. Aphid colonies, source and test plants………………..8
1. Cotton aphid transmission characteristics
of BsMV…………………………...…………..9
1) Preacquisition fasting time………………..10
2) Acquisition access time………………...…11
3) Inoculation access time……………...……11
4) Retention time………………………….....12
5) Number of aphids………………………....12
2. Green peach aphid transmission efficiency of BsMV………………………………...……....13
D. Test of host range………………………………...…13
E. Physical properties of BsMV…………...……….…..14
1. Dilution end-point…………………………………15
2. Thermal inactivation point………..……………….15
3. Longevity in vitro…………………………………16
F. Electron microscopy…………………………...……17
1. Negative staining………………………………….17
G. Virus purification……………………………………17
H. Determination of the molecular weight of viral coat
protein by polyacrylamide gel electrophoresis…...…19
I. Serological assays……..……….……………………20
1. Indirect ELISA……………...…………………….20
2. Ouchterlony test………………………………...…21
III. Results………………………………………………...…....23
IV. Discussion……………………………………………...…..51
V. References…………………………………...………….….58
VI. Biographical sketch……………………………………...…64

References
1. 陳運造。1987。亦蔬亦藥:九層塔,pp. 70-74。 In梁鶚 (編著), 青草集。豐年社。192頁, 臺灣。
2. Blackman, R. L., and Eastop, U. F. 2000. Aphids on the world’s crops: an identification and information guide, 2nd ed. John Wiley & Sons Ltd., New York, 466pp.
3. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996a. Broad bean wilt fabavirus. Plant viruses online: Descriptions and lists from the VIDE database. Version 16th January 1997. URL http://biology.anu.edu.au/Groups/MES/vide.
4. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996b. Cucumber mosaic cucumovirus. Plant viruses online: Descriptions and lists from the VIDE database. Version 16th January 1997. URL http://biology.anu.edu.au/Groups/MES/vide.
5. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996c. Cucumoviruses: bromoviridae. Plant viruses online: Descriptions and lists from the VIDE database. Version 16th January 1997. URL http://biology.anu.edu.au/Groups/MES/vide.
6. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996d. Fabavirus: comoviridae. Plant viruses online: Descriptions and lists from the VIDE database. Version 16th January 1997. URL http://biology.anu.edu.au/Groups/MES/vide.
7. Brunt, A. A., Crabtree, K., Dallwitz, M. J., Gibbs, A. J., Watson, L., and Zurcher, E. J. 1996f. Lamium mild mottle fabavirus. Plant viruses online: Descriptions and lists from the VIDE database. Version 20th August 1996. URL http://biology.anu.edu.au/Groups/MES/vide.
8. Dijkstra, J., and de Jager, C. P. 1998. Practical plant virology: protocols and exercises. Springer, New York, 459 pp.
9. Feldman, J. M. and Garcia, O. 1970. Two new natural hosts of alfalfa mosaic virus. Plant Dis. Rep. 54:722-723.
10. Fereres, A., Blua, M. J., and Perring, T. M. 1992. Retention and transmission characteristics of zucchini yellow mosaic virus by Aphis gossypii and Myzus persicae (Homoptera:Aphididae). J. Econ. Entomol. 85(3):759-765.
11. Garibaldi, A., Gullino, M. L., and Minuto, G. 1997. Diseases of basil and their management. Plant Dis. 81:124-132.
12. Harris, K. F. 1977. An ingestion-egestion hypothesis of noncirculative virus transmission, pp. 165-220. In K. F. Harris & K. Maramorosch (eds.), Aphids virus vectors. Academic Press, New York.
13. Harris, K. F. 1978. Aphid-borne viruses: ecological and environmental aspects, pp. 311-337. In E. Kurstac & K. Maramorosch (eds.), Viruses and environment. Academic Press, New York.
14. Hausbeck, M. K., Welliver, R. A., Derr, M. A., and Gildow, F. E. 1992. Tomato spotted wilt virus survey among greenhouse ornamentals in Pennsylvania. Plant Dis. 76:795-800.
15. Holcomb, G. E., Valverde, R. A., Sim, J., and Nuss, J. 1999. First report on natural occurrence of tomato spotted wilt tospovirus in Basil (Ocimum basilicum). Plant Dis. 83:966.
16. Horváth, J. 1975. Reaction of a little-known Labiatae plant to twelve plant viruses. Acta Agr. Acad. Hung. 24:81-88.
17. Horváth, J. 1979. New data concerning the susceptibility of members of the family Labiatae (Lamiaceae) to plant viruses. I. Ocimum basilicum L. and Ocimum canum Sims. Crop Production 28:331-334.
18. Koenig, R. 1981. Indirect ELISA methods for the broad specificity detection of plant viruses. J. Gen. Virol. 55:53-62.
19. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685.
20. Lisa, V., Luisoni, E., Boccardo, G. Milne, R. G., and Lovisolo, O. 1982. Lamium mild mosaic virus: a virus distantly related to broad bean wilt. Ann. Appl. Biol. 100:467-476.
21. Lovisolo, O. 1960. Ocimum basilicum, nuovo ospite differenziale del virus del mosaico dell'erba medica e di altri virus delle piante. Boll. Staz. Pat. Veg. 17:193-209. ( summary in English)
22. Marini, E. 1955. Una virosi apparsa sul basilico (Ocimum basilicum). Riv. Ortoflorofruttic. Ital. 39:360-362.
23. Mossop, D. W., Francki, R. I. B., and Grivell, C. J. 1976. Comparative studies on tomato aspermy and cucumber mosaic viruses. V. Purification and properties of a cucumber mosaic virus inducing severe chlorosis. Virology 74:544-546.
24. Pirone, T. P., and Harris, K. F. 1977. Nonpersistent transmission of plant viruses by aphids. Ann. Rev. Phytopathol. 15:55-73.
25. Purcifull, D. E., and Batchelor, D. E. 1977. Immunodiffusion tests with sodium dodecyl sulfate (SDS)-treated plant viruses and plant viral inclusions. Bull. No. 783, 39 pp. Agric. Exp. Stn. Uni. Fl., Gainesville.
26. Rivers, T. M. 1937. Viruses and Koch’s postulates. J. Bacteriol. 33:1-12.
27. Ryding, O. 1994. Notes on the sweet basil and its wild relatives (Lamiaceae). Econ. Bot. 48:65-67.
28. Sylvester, E. S. 1954. Aphid transmission of nonpersistent plant viruses with special reference to the Brassica nigra virus. Hilgardia 23:53-98.
29. van Regenmortel, M. H. V., Fauquet, C. M., Bishop, D. H. L., Carstens, E. B., Estes, M. K., Lemon, S. H., Maniloff, J., Mayo, M. A., McGeoch, D. J., Pringle, C. R., and Wickner, R. B. 2000. Virus taxonomy classification and nomenclature of viruses: 7th report of the international committee on taxonomy of viruses. Academic Press, San Diego, CA.
30. Wallick, K., and Zinnen, T. M. 1990. Basil chlorosis: a physiological disorder in CO2-enriched atmospheres. Plant Dis. 74:171-173.
31. Watson, M. A., and Roberts, F. M. 1939. A comparative study of the transmission of hyoscyamus virus 3, potato virus Y, and cucumber virus 1, by the vectors Myzus persicae (Sulz.) M. circumflexus (Buckton) and Macrosiphum gei (Koch). Proc. Roy. Soc. (London) B127:543-576.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top