跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭舜宇
研究生(外文):Shun-Yu Cheng
論文名稱:以溶膠-凝膠法合成高分子基氧化矽複合材料之研究
論文名稱(外文):Study of hybrid materials composed of PMMA and silica prepared via the sol-gel technique
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:90
中文關鍵詞:電子顯微鏡溶膠-凝膠高分子耦合劑複合材料
外文關鍵詞:morphologyTEMTEOSsol-gelhybrid materialPMMA
相關次數:
  • 被引用被引用:20
  • 點閱點閱:560
  • 評分評分:
  • 下載下載:110
  • 收藏至我的研究室書目清單書目收藏:2
摘要
本研究的目的是利用電子顯微鏡觀察以溶膠-凝膠法合成的silica在PMMA基材中,在是否加入高分子耦合劑時或加入不同量的TEOS造成複合材其物理特性及微結構的關係。同時也探討使用TEOS單體水解縮合與直接摻入silica粒子之間的差別,也觀察高分子耦合劑γ-MPS在此複合材的作用。將此高分子前驅物在酸水的作用下進行溶膠-凝膠反應而得到一溶膠-凝膠混成材料(hybrid sol-gel materials)。此混成材料具有良好之光學透明性(optical transparency)以及分子層級之微相分離結構。這些高分子前驅物及其混成材料之結構以及特性經由紅外線光譜(FTIR spectra)、熱差分析儀(DSC)以及熱重分析儀(TGA)定性之。至於結構對混成材料之形態學(morphology)以及熱性質(thermal properties)上的影響可由掃描式電子顯微鏡(SEM)、多點分析以及穿透式電子顯微鏡(TEM)觀察。由這些結果顯示此類混成材料中高分子與矽石間的相容性主要來自於結合高分子以及矽石間的化學鍵。此化學鍵結不僅限制了矽氧烷的水解,同時也降低了矽醇的聚集。另外,在本研究中亦發現在高分子前驅物的熱處理過程中γ-MPS會有水解以及酯交換的現象產生,此現象亦對混成材料的相容性有相當大的幫助。至於混成材料的熱性質主要是隨矽石含量增加而改善。
Abstract
This study focused on the structure of the particles developed in the PMMA matrix as a function of (a) coupling agent (γ-MPS) and (b) TEOS content. We investigated the difference of using TEOS monomer directly added to silica particles. The polymer precursors are catalyzed using acidic catalysts and undergo the sol-gel reaction to form a hybrid sol-gel material. This composite shows that highly optical transparency and microphase separation at the molecular level. The characteristics and properties of the polymer precursors and their hybrid materials were characterized by Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and thermogravimogravimetic analysis (TGA). As for the influence of chemistry structure on morphology and thermal properties, experimental evidence form observations by scanning electron microscopy (SEM), mulitpoints analysis, and transmission electron microscopy (TEM). TEM was used to study the phase separation as well as the fractal structure of these particles present in the system. According to some result, it was found the compatibility between PMMA and silica mainly comes form incorporating the polymer with silica chemical bonding. This chemical bonding not only restrains silyl ester groups form hydrolyzing but also reduces silanol aggregation. Moreover, the thermal properties of the organic–inorganic hybrid are improved as silica content increases.
目錄
第一章 簡介………………………………………………………………….…..1
第二章 文獻回顧…………………………………………………………….…..4
2.1 sol-gel的化學原理 4
2.2有機-無機混合溶凝膠製作法 7
2.2.1有機矽烷氧基前驅物之sol-gel反應 10
2.2.2在溶凝膠中嵌入有機聚合物..……………………………………………10
2.2.3有機相與無機相同時(in situ)形成 14
2.2.4膠狀矽石晶體聚合有機單體 14
2.3玻璃(glass)結構的模型……….……………………………………………16
2.4研究動機……………………………………………………………………20
第三章 實驗方法……….…………...………………………………………….22
3.1實驗藥品. …....22
3.2儀 器 .23
3.3實驗步驟及條件 .26
第四章 結果…………….……………..…………………………….………….35
4.1 FT-IR 定性分析討論………………...………………………….……….…35
4.2 TGA熱性質分析…………………………………………………….…..….35
4.3 DSC熱性質分析…………………………………………………….…..…35
4.4廣角散射儀(WAXS)分析………………………………………….………...44
4.5微結構分析………………………………….………………………..…..….52
4.5.1 Scanning electron microscopy (SEM)…………………………….….……52
4.5.2 Transmission electron microscopy (TEM)………………………..……….68
第五章 討論…………………..………………………………………..……….78
5.1兩相間的化學作用…………………..……………………………………...78
5.2 SiO2相顆粒大小………………………………….……………………...…78
5.3 SiO2形成機制………………………………………………………….……79
第六章 結論……………………………………………………………………..82
第七章 未來研究方向與工作建議……………………………………………...83
參考文獻…………………………………..…………………………..……….…85
附錄……………………………………………………………………………….88
參考文獻

1.C. J. Brinker, W. Scherer, Sol Gel Science The Physics and Chemistry of Sol Gel Processing (San Diego, 1990).
2.A. Morikawa, Y. Iyoku, Y. I. Kakimoto, J. Mater. Chem. 2, 679 (1985).
3.G. L. Wilkes, B. Orler, H. H. Huang, Abstracts of Papers of The American Chemical Society 190, 109 (1985).
4.G. L. Wilkes, J. Y. Wen, J. Chem. Mater. 8, 1667-1681 (1996).
5.C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Ashley, J. Non-Cryst. Solids. 48, 47 (1982).
6.C. J. Brinker, K. D. Keefer, D. W. Schaefer, C. S. Assink, J. Non-Cryst. Solids. 63, 45 (1984).
7.R. K. Iler, The Chemistry of Silica (New York, 1979).
8.R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc. 72, 5750 (1950).
9.M. G. Voronkov, Y. A. Yuzhelevski, The Siloxane Bond (New work, 1984).
10.C. J. Brinker, J. Non-Cryst. Solids. 100, 31-50 (1988).
11.H. Schmidt, B. Seifering, Mater. Res. Soc. Symp. Proc. 73, 739 (1986).
12.R. A. Assink, B. D. Kay, J. Non-Cryst. Solids. 99, 359-370 (1988).
13.J. E. Mark, Polym. Eng. Sci. 36, 2905 (1996).
14.Y. Wei, W. Zhou, J. H. Dong, K. Y. Qiu, J. Polym. Sci., A, Polym. chem. 36, 1607 (1988).
15.C. J. T. Landry, B. K. Cotrain, Polymer 33, 1486-1495 (1992).
16.C. J. T. Landry, B. K. Cotrain, J. A. Wesson, N. Zumbutyadis, Lippert, J. L., Polymer 33, 1496-1506 (1992).
17.Y. Chujo, R. Tamaki, Appl. Organmetal. Chem. 12, 755 (1988).
18.Y. Wei, R. Baktharatchalam, C. K. Whithecar, Polymer 2, 337 (1990).
19.M. P. Stevens, Polymer Chemistry Introduction (1990).
20.H. B. Sunkara, J. M. Jethmalain, W. T. Ford, Chem.Mater. 6, 362 (1994).
21.W. Stober, A. Frienk, E. Bohn, J. Colloid Inyerface Sci. 26, 62 (1968).
22.R. D. Badely, W. T. Ford, F. J. McEnore, R. A. Assink, Langmuir 6, 792 (1990).
23.A. P. Philipse, A. Vrij, J. Colloid Interface Sci. 128, 121 (1989).
24.W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics (1991).
25.Y. M. Chiang, D. P. Birnie, W. D. Kingery, Physical Ceramics (1997).
26. B. D. Cullity, Elements of X-ray Diffraction (1978).
27. R. M. Silverstein, G. C. Bassler, T. C. Morrill, Spectrometric Identification of Organic Compounds (New York,1991).
28. T. A. Witten, L. M. Sander, Physical review letters 47, 1400 (1981).
29. J. M. Yang, H. S. Chen, Y. G. Hsu, F. H. Lin, Y. H. Chang, Angewandte Makromolekulare Chemie 251, 49-60 (1997).
30. J. M. Yang, H. S. Chen, Y. G. Hsu, F. H. Lin, Y. H. Chang, Angewandte Makromolekulare Chemie 251, 61-72 (1997).
31. T. Asefa, M. J. MacLachian, N. Coombs, G. A. Ozin, Nature 402,867-871
(1999).
32. K. Haraguchi, Y. Usami, Y. Ono, J. Mate. Sci. 33, 3337-3344 (1998).
33. K. Haraguchi, Y. Usami, K. Yamamura, Polymer 39, 6243-6250 (1998).
34. G. H. Hsiue, W. J. Kuo, Polymer 41, 2813-2825 (2000).
35. Z. H. Huang, K. Y. Qiu, Polymer 38, 521-526 (1997).
36. S. P. Nunes, T. Inoue, Journal of Membrane Science 111, 93-103 (1996).
37. S. P. Nunes, K. V. Peinemann, K Ohlrogge, Journal of Membrane Science 157,
219-226 (1999).
38. K. F. Silveira, V. P. Yoshida, S. P. Nunes, Polymer 36, 1425-1434 (1995).
39. G. L. Wilkes, D. E. Rodrignes, B. G. Risch, Chem. Mater. 9, 2709-2719 (1997).
40. A. Ribbe, O. Prucker, J. Rühe, Polymer 37, 1087-1093 (1996).
41. C. T. Kresge, M. E. Leonowicz, Nature 359, 710-712 (1992).
42. A. Firouzi, D. Kumar, Science 267, 1138-1143 (1995).
43. 洪麗閺, “以不同方法製備之PVA-SiO2有機-無機奈米混成材料之性質研究”, 國立台灣科技大學碩士論文, 民國88年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top