跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/12 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭宗榮
研究生(外文):Tsung-Jung Kuo
論文名稱:渦輪分子真空幫浦葉片幾何之研究
論文名稱(外文):A Study on the Blade Geometry of Turbomolecular Pumps
指導教授:蔡穎堅
指導教授(外文):Ying-Chien Tsai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:89
中文關鍵詞:蒙地卡羅法渦輪分子真空幫浦
外文關鍵詞:TMPMonte Carlo Method
相關次數:
  • 被引用被引用:6
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:2
一個性能好的渦輪分子真空幫浦必須有高壓縮比及高抽氣率,而渦輪分子真空幫浦之性能與其轉子之葉片幾何形狀及轉速是相依的。所以當設計幫浦葉片時必須考慮葉片之幾何參數如:葉片角 、葉片間距 、葉片寬 、葉片寬比 、葉片外徑 、葉片內徑 及葉片數 和葉片轉速。
本研究中是以蒙地卡羅法來模擬氣體分子之行為,並假設單列葉片兩側之氣體分子為麥斯威爾分佈(Maxwellian distribution)且氣體分子與葉片之碰撞為漫反射形式。於本研究中之模擬機構為二維模式,最重要的是在本研究中將比較曲面形式葉片與平面形式葉片二維之抽氣性能,並使用直接多級模擬法來模擬多級葉片之抽氣性能。在幫浦多級葉片排列時,中間之葉片列其左右兩側之氣體分子分佈將為作業兩列之葉片所影響,而不再是呈現麥斯威爾分佈現象。
綜合模擬之結果,本文提供渦輪分子真空幫浦轉子葉片幾何參數對於抽氣性能之影響及其可採用之幾何參數範圍,並提出葉片排列方式之探討,這些結果對於渦輪分子真空幫浦葉片之排列與幾何設計將有所助益。
A turbomolecular pump (TMP) with good performance must have higher compress ratio and higher pumping speed. At the same time, the performance of turbomolecular pump depends on blade geometries and the rotational speed. When design the blade of Turbomolecular Pump, the blade geometries including, the blade angle, the blade spacing, the blade chord, the spacing-chord ratio, the tip diameter, the root diameter, and the number of blades and as well as the rotational speed of the rotor must be considered.
In this paper the simulation for gas molecular behavior is obtained by the Monte Carlo method. Therefore, a Maxwellian distribution of particles at the inlet and outlet of the flow region and diffuse reflection for the particles that collide with the walls are assumed. Models of this type have been applied to the two-dimensional case. The most important result is to compare the performance between turbomolecular pumps with curve style and plane style of blades. Furthermore, that direct multi-stage simulation (DMS) by Monte Carlo method is used in this paper. The compression ratio multiplication (CRM) method is the improved due to the considering the change of velocity distribution of molecular at the adjacent stages.
From results of the simulation, the effect upon the geometric parameters of the blades and the arrangement in the multi-stage are concluded, that are very useful in designing the turbomolecular.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VII
符號說明 VIII
第一章 緒論 1
1-1研究背景及目的 1
1-2文獻回顧 2
1-3論文組織與章節 3
第二章 渦輪分子真空幫浦之抽氣原理 4
2-1渦輪分子真空幫浦簡介 4
2-1-1渦輪分子真空幫浦之主要構造 5
2-1-2渦輪分子真空幫浦葉片之二維幾何定義 7
2-2氣體分子之特性 9
2-2-1氣流種類及區分方式 10
2-2-2自由分子流 11
2-3渦輪分子真空幫浦之抽氣原理 12
2-4氣體分子速度分佈函數 16
2-5本章結語 17
第三章 蒙地卡羅法於渦輪分子真空幫浦之流道模擬 18
3-1蒙地卡羅法 18
3-2渦輪分子真空幫浦於二維流場之模擬 19
3-2-1起始流場之設定 20
3-2-2平面型與曲面型葉片流場幾何之設定 25
3-2分子氣體分子由邊界進入 29
3-3氣體分子與葉片之碰撞關係 32
3-4單列葉片之模擬 34
3-4-1單列葉片之壓縮比及抽氣率計算 35
3-4-2單列曲面型葉片與平面型葉片之單列性能比較 36
3-4-3本節結論 45
3-5多級葉片之模擬 46
3-5-1多級葉片轉子列與靜子列間之相對速度關係 47
3-5-2多級葉片之壓縮比及抽氣率計算 48
3-5-3多級葉片之排列設計 51
3-5-4多級排列之分析結果比較 52
3-5-5本節結論 54
3-6模擬精度之檢測 55
3-6-1模擬分子數與精度之關係 55
3-6-2假定葉片轉速為零檢查模擬精度 57
3-6-3模擬結果重現性檢查 60
3-7本章結論 61
第四章 模擬軟體之建構與開發 63
4-1模擬程式設計概念 63
4-2模擬程式架構 64
4-3單列模擬程式 65
4-4多級葉片模擬程式 68
4-4-1多級葉片流場模擬程式架構 69
4-4-2多級模擬程式之操作介面 70
4-5本章結語 72
第五章 結論與建議 73
參 考 文 獻 75
1.Kruger, C. H., 1960, The Axial-flow Compressor in the Free-molecular Range, MIT Ph. D. Dissertation, Cambridge, Massachusetts.
2.Bird, G. A., 1994, Molecular Gas Dynamics and The Direct Simulation of Gas Flows, Oxford University Press, New York.
3.Sekiya, 1990, “Study of the Performance of Turbomolecular Pumps,” Transactions of the Japan Society of Mechanical Engineers Part B, v56 (525), pp1400-1406.
4.Schneider, T. N., Katsimichas, S., de Oliveira, C. R. E. and Goddard, A. J. H., 1997, “Analysis of Three-Dimensional Single Stage and Two-Dimensional Multistage Models of Flows in Trbomolecular Pumps,” Vacuum, v48, n5, pp449-453.
5.張郁雯、周榮源,1999,“渦輪分子幫浦單級二維流道之直接蒙地卡羅法計算”,真空科技期刊,第十二卷第一期,7-15頁。
6.郭錦斌,1999,渦輪分子真空幫浦抽氣機構之研究,國立交通大學機械工程學系,碩士論文,新竹。
7.蔡鴻志,2000,渦輪分子真空幫浦葉片設計參數分析,國立中山大學機械工程學系,碩士論文,高雄。
8.Antoniou, A. G. and Valamonte, S. E., 1995, “The Turbomolecular Pump in Molecular State,” Vacuum, v46, n7, pp709-715.
9.Bird, G. A., 1976, Molecular Gas Dynamics, Clarendon Press, Oxford.
10.Casaro, F. and levi, G., 1991, “Compression Ratio and Leakage Through Stages in Turbomolecular Pumps,” Journal of Vacuum Society Technology, A9, 3, pp2508-2061.
11.Chandran, M. and Krishna Murthy, M. V.,1997, “A Markov Chain Model for a Turbomolecular Pump Throry and Experiments,” Vacuum, v48, pp899-911.
12.Cheng, H. P., Jou, R. Y., Chen, F. Z., and Chang, Y. W., 2000, “Three-Dimensional Flow Analysis of Spiral-Grooved Turbo Booster Pump in Slip and Continuum Flow,” Journal of Vacuum Society Technology, A18, 2, pp543-551
13.Chu, J. G., 1988, “A New Hybird Molecular Pump with Large Throughput,” Journal of Vacuum Society Technology, A6, 3, pp1202-1204.
14.De Simon, M., 1990, “Influence of Clearance on Turbo Molecular Pump performance,” Vacuum, v41, 7-9, pp2021-2024.
15.Duval, P., Raynaud, A. and Saulgeot, C., 1988, “The Molecular Drag Pump: Principle, Characteristics, and Applications,” Journal of Vacuum Society Technology, A6, 3, pp1187-1191.
16.Henning, J., 1988, “Thirty Years of Turbomolecular Pumps: A Review and Recent Developments,” Journal of Vacuum Society Technology, A6, 3, pp1196-1201.
17.Heo, J. S., Hwang, Y. K., 2000, “DSMC calculations of blade rows of a Turbomolecular Pump in the Molecular and Transition Flow Regions,” Vacuum, 56, pp133-142.
18.Katsimichas, S., Goddard, A. J. H., Lewington, R., De Oliveira, C. R. E., 1995, “General Geometry Calculations of One-Stage Molecular Flow Transmission Probabilities for Turbomolecular Pumps,” Journal of Vacuum Society Technology, A13, 6, pp2954-2961.
19.Kazuhide Ino, Katsuyuki Sekine, Tadashi Shibata, and Tadahiro Ohimi, 1998, “Improvement of Turbomolecular Pumps for Ultraclean, Low-Pressure, and High-Gas-Flow Processing,” Journal of Vacuum Society Technology, A16, 4, pp2703-2710.
20.Konishi, N., Shibata, T., Ohmi, T., 1996, “Impurity Back Diffusion Through an Ultrahigh Vacuum Turbomolecular Pump Under Large Gas Throughput,” Journal of Vacuum Society Technology, A14, 5, pp2958-2962.
21.Krieger, D., 1979, “Advances in Turbo Molecular Pump,” Solid State Technology, v12, pp82-87.
22.Mathes, R., and Perin, J. P., “Vacuum Performances of Molecular and Turbomolecular Pumping Stages at Low Temperature,” Vacuum, v47, 8, pp779-782.
23.Panos, C. N., Antoniou, A. G., Valamontes, S. E., 1994, “The Helicoid Multi-Groove Vacuum Pump in Both Viscous and Molecular States,” Vacuum, v45, 8, pp841-847.
24.Panos, C. N., Antoniou, A. G., Valamontes, S. E., 1996, “The Helicoid Multi-Groove Molecular and the Turbomolecular Vacuum Pumps in Molecular State Under the Scope of Statistical Behavior of Moleculars,” Vacuum, v47, 11, pp1361-1370.
25.Schneider, T. N., Katsimichas, S., de Oliveira, C. R. E., and Goddard, A. J. H., 1998, “Empirical and Numerical Calculations in Two Dimensions for Predicting the Performance of a Single Stage Turbomolecular Pump,” Journal of Vacuum Society Technology, A16, 1, pp175-180.
26.Spagnol, M., Cerruti, R., and Helmer, J., 1998, “Turbomolecular Pump Design for Pressure operation,” Journal of Vacuum Society Technology, A16, 3, pp1151-1156.
27.Steinheimer, K. H. and Werlich, F., 1991, “Behaviour of Turbo Molecular pumps at High Pressure,” Vacuum, v42, 12, pp749-752.
28.Tu, J. Y., Zhu, Y., Wang, X. Z. and Pang, S. J., 1990, ”Optimization Design for Turbo Blades of a Hybrid-type Molecular Pump,” Vacuum, v 41, pp2070-2072.
29.Tu, J. Y., Yang, N. H., Pang, S. J. and Zu, Y., 1988, “A Further Exploration of Important Factor Affecting the Pumping Performance of Turbomolecular Pumps,” Journal of Vacuum Society Technology, A6, 4, pp2535-2540.
30.Tu, J., Zhu, Y. and Wang, X., 1991, “New Pumping Disk for Use in a Turbo Molecular Pump with Various Length Blades,” Vacuum, v42, 3, pp199-200.
31.沃德切尼、戴維金凱德著,薛密譯,1991,數值數學和計算,復旦大學出版,上海。
32.張達義,1982,“渦輪分子幫浦”,科儀新知,第四卷第四期,43-50頁。
33.謝澤仁,1989,“超高真空系統的設計與建立”,科儀新知,第十卷第五期,32-52頁。
34.周榮源、陳峰志、鄭鴻斌、張郁雯、高健薰,1997年6月,“渦輪真空幫浦之理論與發展”,科儀新知,第十八卷第六期,80-94頁。
35.楊錦章,1990,“渦輪式分子真空幫浦”,真空科技期刊,第三卷第三期,56-65頁。
36.楊錦章,1990,“渦輪式分子真空幫浦(續)”,真空科技期刊,第三卷第四期,29-41頁。
37.吳金益,1994,“認識渦輪分子式幫浦-過去、現在與未來”,真空科技期刊,第七卷第二期,46-58頁。
38.蘇青森,1980,真空科技,東華書局,台北。
39.呂登復,1996年6月,實用真空技術,國興出版社,台北。
40.賴怡利,1998,以直接模擬蒙地卡羅法分析微尺寸方管之流場現象,國立成功大學航空太空工程學系,碩士論文,台南。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top