|
References [1] Ya. Alber, Metric and generalized projection operators in Banach spaces: prop-erties and applications. In Theory and Applications of Nonlinear Operators of Monotone and Accretive Type (A. Kartsatos, editor). Marcel Dekker, New York, 15-50, 1996. [2] S. S. Chang and N. J. Huang, Generalized strongly nonlinear quasi-complemenatrity problems in Hilbert spaces, Journal of Mathematical Analysis and Applications, 158, 194-202, 1991. [3] K. Goebel and S. Reich, Uniform convexity, hyperbolic geometry and nonex-pansive mappings, New York, N. Y., M. Dekker, 1984. [4] G. J. Habetler and A. L. Price, Existence theory for generalized nonlinear complementarity problems, Journal of Optimization Theory and Applications, 7, 223-239, 1971. [5] C. R. Jou and J. C. Yao, Algorithm for generalized multivalued variational inequalities in Hilbert spaces, Computers and Mathematics with Applications, 25(9), 7-13, 1993. [6] S. Karamardian, Generalized complementarity problems, Journal of Optimiza-tion Theory and Applications, 8, 161-168, 1971. [7] M. A. Noor, Generalized quasi-complementarity problems, Journal of Mathe-matical Analysis and Applications,120, 321-327, 1986. [8] M. A. Noor, On the nonlinear complementarity problem, Journal of Mathe-matical Analysis and Applications, 13, 455-460, 1987. [9] M. A. Noor, General variational inequalities, Applied Mathematics Letters, 1(2), 119-122, 1988. [10] M. A. Noor, Nonlinear quasi-complementarity problems, Applied Mathematics Letters, 2(3), 251-254, 1989. [11] R. Saigal, Existence of the generalized complementarity problem, Mathematics of Operations Research, 1, 260-266, 1976.
|