|
1. Barlow, R. E. and Proschan, F. (1981): Statistical Theory of Reliability and Life Testing: Probability Models. To Begin With, Silver Spring, MD. 2. Boyce, W. E. and DiPrima, R. C. (1992): Elementary differential equations and boundary value problems. New York: John Wiley & Sons. 3. Brown, H. (1990): Error bounds for exponential approximations of geometric convolutions. Ann. Prob. 18, 1388-1402. 4. Cai, J. and Kalashnikov, V. (2000): NWU property of a class of random sums. J. Appl. Prob. 37, 283-289. 5. Cinlar, E. and Jagers, P. (1973): Two mean values which characterize the Poisson process. J. Appl. Prob.10, 678-681. 6. Fitzpatrick, P. M. (1996): Advanced Calculus. New York: PWS Publishing Company. 7. Fosam, E. B. and Shanbhag, D. N. (1997): Variants of the Choquet-Deny theorem with applications. J. Appl. Prob. 34, 101-106. 8. Gupta, P. L. and Gupta, R. C. (1986): A characterization of the Poisson process. J. Appl. Prob. 23, 233-235. 9. Holmes, P. L. (1974): A characterization of the Poisson Process. Sankhya A 36, 449-450. 10. Huang, W. J. and Chang, W. C. (2000): On a study of the exponential and Poisson characteristics of the Poisson process. Metrika 50, 247-254. 11. Huang, W. J. and Li, S. H. (1993): Characterizations of the Poisson process using the variance. Commun. Statist.-Theory Meth. 22, 1371-1382. 12. Huang, W. J., Li, S. H. and Su, J. C. (1993): Some characterizations of the Poisson process and geometric renewal process. J. Appl. Prob. 30, 121-130. 13. Rao, C. R., Sapatinas, T. and Shanbhag, D. N. (1994): The integrated Cauchy functional equation: some comments on recent papers. Adv. Appl. Prob. 26, 825-829.
|