跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 11:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏駿翔
研究生(外文):Chun-hsiang Yen
論文名稱:添加Mn/γ-Al2O3於觸媒濕式氧化程序處理
論文名稱(外文):Catalytic Wet Air Oxidation of 2,4-Dichlorophenol Solutions with Addition of Mn/γ-Al2O3
指導教授:樓基中樓基中引用關係
指導教授(外文):Jie-Chung Lou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:89
語文別:中文
論文頁數:144
中文關鍵詞:24-二氯酚觸媒濕式氧化法觸媒Mn/γ-Al2O3低分子量酸Mn-Ce/γ-Al2O3
外文關鍵詞:2Mn-Ce /γ-Al2O3 composite oxide4-DichlorophenolCatalytic Wet Air Oxidation (CWAO)CatalystMn /γ-Al2O3 composite oxidelow molecule weight carbon acid
相關次數:
  • 被引用被引用:14
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究以濕式氧化法(Wet Air Oxidation,WAO)配合添加不同觸媒處理2,4-二氯酚水溶液(400 mg/L),濕式氧化實驗範圍:溫度(393〜453 K),總壓力(3.0 MPa),觸媒(Mn/γ-Al2O3與Mn-Ce/γ-Al2O3)。半批次WAO反應時間60分鐘(Temp.=433 K,Pt=3.0 MPa,pH0=11.0)時, COD總去除率達19.2 %,但添Mn/γ-Al2O3觸媒與Mn-Ce/γ-Al2O3觸媒後,COD總去除率可分別提昇至69.4%及71.4%。
添加Mn-Ce/γ-Al2O3觸媒於連續式濕式氧化程序(Catalytic Wet Air Oxidation,CWAO),在433 K、總壓力3.0 MPa、空間流速4.0 hr-1之處理條件下,其COD去除率可達61.4%以上,且BOD5/COD比值提昇至0.640以上,若再配合既有廢水之生物處理程序,則放流水應可符合我國89年放流水標準(COD≦100 mg/L)。
以COD去除率來估算活化能值,分別如下:添加Mn/γ-Al2O3之第一階段(20.77 kJ /mol),第二階段(23.99 kJ /mol);添加Mn-Ce/γ-Al2O3之第一階段(14.77 kJ /mol),第二階段(23.30kJ /mol)。比較之下,上述添加Mn-Ce/γ-Al2O3觸媒,皆明顯地較添加Mn/γ-Al2O3觸媒降低濕式氧化反應所需之活化能。
分析WAO處理後溶液的液相層析圖譜中,追蹤到有2-氯酚、酚、對苯二酚、草酸及甲酸存在,結果也證實當處理2,4-二氯酚之廢液時,以此濕式氧化條件(Temp.=493K),仍不足以將2,4-二氯酚完全氧化成甲酸。添加觸媒於反應中,可將分解產生之低分子酸,繼續氧化成甲酸,其中以Mn-Ce/γ-Al2O3觸媒的效果最佳。
The 2,4-Dichlorophenol (2,4-DCP) solution (400 mg L-1) was treated by a wet air oxidation (WAO) process at temperatures of 393-453 K under a total pressure of 3.0 MPa using either Mn /γ-Al2O3 or Mn-Ce /γ-Al2O3 composite oxide as a catalyst. A COD reduction was found only 19.2% within 60 min if the WAO process was performed in a semi-batch type reactor without any catalyst addition; however, a higher COD removal of 69.4% or 71.4% was achieved when the Mn /γ-Al2O3 or Mn-Ce /γ-Al2O3 oxide was applied in the WAO process, respectively.
A catalytic wet air oxidation (CWAO) of 2,4-DCP solution using the Mn-Ce /γ-Al2O3 oxide as a catalyst was conducted in another up-flowing fixed-bed reactor at 433 K under a pressure of 3.0 MPa in a space velocity of 4.0 hr-1. The COD reduction of the solution of 2,4-DCP was found above 61.4%. Also, both BOD5 and COD values in the effluent from the CWAO process was examined, and the BOD5/COD ratio was about 0.64. On the other hand, it is possible to treat the 2,4-DCP solution (<400 mg L-1) to meet the discharging regulation standard (COD<100 mg L-1) began in 1998 at Taiwan using a CWAO run and followed by an activated sludge treatment unit.
The Ea values of the CWAO of 2,4-DCP using the Mn /γ-Al2O3 oxide as a catalyst were 20.77 KJ mol-1 and 23.99 KJ mol-1, respectively, for the first-stage and the second-stage reaction, respectively. In addition, the Ea values of the CWAO of 2,4-DCP over the Mn-Ce /γ-Al2O3 oxide were 14.77 KJ mol-1 and 23.30 KJ mol-1, respectively, for the first-stage and the second-stage reaction. Obviously, the Mn-Ce /γ-Al2O3 oxide does a better job in reducing the activation energy of the CWAO of 2,4-DCP than the Mn /γ-Al2O3 oxide does.
Unfortunately, 2,4-DCP is hardly decomposed to become a low molecule weight carbon acids by the WAO run undergoing at 493 K without any catalyst addition. Several intermediates, such as 2-chlorophenol, phenol, catechol, oxalic acid, and formic acid, of the effluent from the CWAO of 2,4-DCP run over the Mn-Ce /γ-Al2O3 oxide were determined with a high-performance liquid chromatography.
目 錄
頁數
謝誌 I
中文摘要 II
英文摘要 IV
目錄 VI
表目錄 X
圖目錄 XI
符號說明 XVII
委託分析項目 XIX

第一章 前言 1-1
1-1研究緣起 1-1
1-2研究目的 1-4
1-3研究內容 1-5

第二章 文獻回顧 2-1
2-1觸媒濕式氧化法 2-1
2-1-1濕式氧化原理 2-1
2-1-2濕式氧化法的發展 2-1
2-1-3濕式氧化法之動力模式 2-5
2-1-4濕式氧化法之反應步驟 2-7
2-1-5濕式氧化法的產物 2-11
2-1-6濕式氧化法的操作因子 2-13
2-1-6-1反應溫度 2-13
2-1-6-2反應壓力 2-13
2-1-6-3反應時間 2-15
2-1-6-4水溶液酸鹼度 2-16
2-1-6-5觸媒添加 2-16
頁數
2-2觸媒 2-18
2-2-1擔體性質 2-18
2-2-2擔體效應 2-19
2-2-3活性金屬 2-20
2-2-4觸媒製備方法概述 2-22

第三章實驗設備與研究方法 3-1
3-1觸媒製備及性質分析 3-1
3-1-1觸媒製備裝置 3-1
3-1-2觸媒製備程序 3-1
3-2實驗裝置 3-14
3-2-1實驗設備及功能說明 3-14
3-2-2實驗操作步驟 3-19
3-3實驗材料 3-21
3-3-1實驗水樣 3-21
3-3-2實驗藥品 3-21
3-3-3實驗儀器 3-24
3-4實驗方法 3-26
3-4-1實驗設計 3-26
3-4-2水質分析 3-26
3-4-3實驗分析項目及方法 3-30
3-4-4分析條件參數與適宜性之評估 3-36

第四章 結果與討論 4-1
4-1前導實驗 4-1
4-1-1 溫度對WAO處理2,4-二氯酚去除率之影響 4-1
4-1-2 溫度對WAO處理COD去除率之影響 4-1
4-2半批次式觸媒濕式氧化處理程序 4-3
頁數
4-2-1 pH值之變化 4-3
4-2-2初始pH值對CWAO去除率之影響 4-4
4-2-3 添加觸媒對去除率之影響 4-6
4-3連續式觸媒濕式氧化程序 4-10
4-3-1 2,4-二氯酚及COD去除率 4-10
4-3-2添加觸媒對生物分解性之探討 4-16
4-3-3氯離子濃度之變化 4-18
4-4觸媒活性衰退試驗 4-19
4-5中間產物定性分析 4-24
4-5-1半批次式WAO 4-26
4-5-2 連續式CWAO 4-33
4-5-3 CO2產物之定性分析 4-35
4-6反應路徑推測 4-36
4-7化學需氧量之濕式氧化反應動力式推導 4-38

第五章 結論與建議 5-1

第六章 參考文獻 6-1


附錄A 儀器原理
A-1 BET比表面積分析儀 A-1
A-2 XRD(X-ray射線繞射分析儀) A-4
A-3 掃描式電子顯微鏡分析 A-7
A-5 元素分析儀 A-9
A-6 高效率液相層析儀(HPLC) A-10


頁數
附錄B 各分析方法之適宜性 B-1
B-1 2,4-DCP (HPLC) B-1
B-2 Cl- (IC) B-4
B-3 CO2 (GC) B-7
B-4產物分析(HPLC)
B-4-1甲酸 B-9
B-4-2草酸 B-12
B-4-3 順丁二烯 B-15

附錄C 水蒸氣壓表 C-1

附錄D 觸媒元素分析數據 D-1

附錄E 觸媒金屬溶出數據 E-1

附錄F X-ray繞射數據及圖譜 F-1

附錄G 實驗數據一覽表 G-1

附錄H IC陰離子管柱(AS4A-SC)出廠層析圖 H-1

附錄I 個人簡歷 I-1

表目錄
頁數
表1-1 常見酚及氯酚化合物之物理及化學特性 1-2
表1-2 氯酚類化合物之生物毒性 1-4
表2-1 反應條件下水蒸氣壓計算表 2-15
表2-2 常見存在於Perovskite型氧化物中之陽離子 2-26
表3-1 觸媒之表面性質 3-7
表3-2 濕式氧化處理程序操作條件直交表 3-29
表3-3 COD分析相關品管數據 3-31
表3-4 BOD分析相關品管數據 3-33
表3-5 氯酚類化合物最大吸收波長 3-35
表4-1 觸媒之表面性質(Used Catalyst) 4-19
表4-2 連續反應後金屬溶出結果 4-20
表4-3 觸媒表面之元素分析結果 4-21
表4-4 各操作溫度反應15分鐘後處理液之pH值 4-27
表4-5 各種化合物之pKa值 4-27
表4-6 圖中2,4-二氯酚水溶液CWAO方程式 4-40
表4-7 處理2,4-二氯酚水溶液濕式氧化程序之活化能及Arrhenius Frequency (Temp. =393~453 K,Pt=3.0 MPa、pH0=11.0) 4-43


圖目錄
頁數
圖1-1 2,4-二氯酚之分子構造式 1-3
圖1-2 研究流程圖 1-6
圖2-1 美國Zimpro公司濕式氧化流程圖 2-3
圖2-2 APO反應器操作過程典型的溫度/壓力變化圖 2-3
圖2-3 濕式氧化路徑流程圖 2-5
圖2-4 酚之氧化反應途徑 2-8
圖2-5 氫氧自由基與4-氯酚反應途徑 2-9
圖2-6 UV/TiO2/Fe3+光催化分解2-氯酚之反應機制 2-10
圖2-7 波洛斯凱特型金屬氧化物結構 2-24
圖3-1 觸媒製備之沉澱裝置 3-4
圖3-2 製備觸媒燒結裝置示意圖 3-5
圖3-3 觸媒製備流程圖 3-6
圖3-4 以掃描式電子顯微鏡( SEM )拍攝之Mn/γ-Al2O3觸媒表面結構(New Prepared Catalyst;放大倍率:2000 X) 3-8
圖3-5 以掃描式電子顯微鏡( SEM )拍攝之Mn-Ce/γ-Al2O3觸媒表面結構(New Prepared Catalyst;放大倍率:2000 X)
3-8
圖3-6 Mn/γ-Al2O3觸媒之EDS圖(New Prepared Catalyst)
3-9
圖3-7 Mn-Ce/γ-Al2O3觸媒之EDS圖(New Prepared Catalyst)
3-9
頁數
圖3-8 X-ray繞射圖譜(一) 3-10
圖3-9 X-ray繞射圖譜(二) 3-12
圖3-10 X-ray繞射圖譜(三) 3-13
圖3-11 半批次式反應器設備圖 3-16
圖3-12 連續式反應設備圖 3-18
圖3-13 梯度示意圖 3-36
圖4-1 溫度對2,4-二氯酚去除率之影響(Initial conc. of 2,4-DCP=400 mg/L, Pt=3.0 MPa,pH0=11.0,Temp. =433~493 K)
4-2
圖4-2 溫度對COD去除率之影響(Initial conc. of COD=510 mg/L, Pt=3.0 MPa,pH0=11.0,Temp. =433~493 K) 4-2
圖4-3 添加觸媒對pH值之影響(Initial conc. of 2,4-DCP=400 mg/L, Pt=3.0 MPa,Temp. =433 K) 4-4
圖4-4 初始pH值對2,4-二氯酚去除率之影響(Initial conc. of COD=510 mg/L, Pt=3.0 MPa,Temp. =433 K) 4-5
圖4-5 初始pH值對COD去除率之影響(Initial Conc. of COD=510 mg/L, Pt=3.0 MPa,Temp. =433 K) 4-5
圖4-6 添加觸媒對2,4-二氯酚去除率之影響(Initial conc. of 2,4-DCP=400 mg/L,Pt=3.0 MPa,Temp. =433 K) 4-6
圖4-7 添加觸媒對COD去除率之影響(Initial conc. of COD=510 mg/L, Pt=3.0 MPa,pH0=11.0,Temp. =433 K) 4-7

頁數
圖4-8 半批次式濕式氧化程序處理2,4-DCP水溶液之Cl-離子濃度變化趨勢圖(ClT-=168mg/L,Pt=3.0 MPa,pH0=11.0,Temp. =433 K) 4-9
圖4-9 添加Mn/γ-Al2O3觸媒對2,4-二氯酚去除率隨空間流速之影響(連續式)(Initial conc. of 2,4-DCP=400 mg/L,Pt=3.0 MPa,Temp. =393~453 K) 4-11
圖4-10 添加Mn/γ-Al2O3觸媒之COD去除率隨空間流速之影響(連續式)(Initial conc. of COD=510 mg/L,Pt=3.0 MPa,Temp. =393~453 K)
4-11
圖4-11 添加Mn/γ-Al2O3觸媒對礦化效率隨空間流速之影響(連續式)(Initial conc. of TOC=158 mg/L,Pt=3.0 MPa,Temp. =393~453 K)
4-12
圖4-12 添加Mn-Ce/γ-Al2O3觸媒對2,4-二氯酚去除率 (連續式)(Initial conc. of 2,4-DCP=400 mg/L,Pt=3.0 MPa,Temp. =393~453 K) 4-13
圖4-13 添加Mn-Ce/γ-Al2O3觸媒對COD去除率隨空間流速之影響(連續式)(Initial conc. of COD=510 mg/L,Pt=3.0 MPa,Temp. =393~453 K) 4-14



頁數
圖4-14 添加Mn-Ce/γ-Al2O3觸媒對礦化效率隨空間流速之影響(連續式)(Initial conc. of TOC=158 mg/L,Pt=3.0 MPa,Temp. =393~453 K)
4-15
圖4-15 添加觸媒與未添加觸媒於WAO程序中,處理液所含BOD5/COD隨空間流速之相互變動關係(連續式)(Initial conc. of COD=510 mg/L,Pt=3.0 MPa,Temp. =433 K)
4-17
圖4-16 添加觸媒於WAO程序中,處理液所含氯離子濃度去除效率(連續式)(Initial conc. of COD=510 mg/L, Pt=3.0 MPa,Temp. =433 K) 4-18
圖4-17 以掃描式電子顯微鏡( SEM )拍攝之Mn/γ-Al2O3觸媒表面結構 (Used Catalyst;放大倍率:2000 X) 4-22
圖4-18 以掃描式電子顯微鏡( SEM )拍攝之Mn-Ce/γ-Al2O3觸媒表面結構 (Used catalyst;放大倍率:2000 X) 4-22
圖4-19 Mn/γ-Al2O3觸媒之EDS圖(Used catalyst) 4-23
圖4-20 Mn-Ce/γ-Al2O3觸媒之EDS圖(Used catalyst) 4-23
圖4-21 半批次式WAO反應時間15分鐘之層析圖;(1)453K,(2)473K,(3)493K,(4)513K,偵測器波長為280 nm(Initial conc. of 2,4-DCP=2000 mg/L,Pt=4.0MPa,pH0=11.0) 4-25
頁數
圖4-22 內部添加氯酚類化合物之前後層析圖驗証,偵測器波長為280 nm (Temp. =493 K,pH0=11.0,Pt=4.0 MPa,initial Conc. of 2,4-DCP =200 mg/L) 4-26
圖4-23 五種化合物標準品之紫外光-可見光掃瞄圖譜,掃瞄波長200~400 nm(Conc.=15 mg/L) 4-29
圖4-24 半批次式WAO反應時間15分鐘之層析圖(1)453K,(2)473K,(3)493K,(4)513K,偵測器波長為230 nm(Initial conc. of 2,4-DCP=2000 mg/L,pH0=11.0,Pt=4.0MPa) 4-30
圖4-25 內部添加各種酸類前後之驗証,偵測器波長為230 nm(Initial conc. of 2,4-DCP=2000 mg/L,Pt=4.0MPa,pH0=11.0,Temp. =513 K,反應時間15 min之層析圖) 4-31
圖4-26 內部添加對苯二酚(hydroquinone)及鄰二羥苯(Catechol)前後之驗証,偵測器波長為230 nm(Initial conc. of 2,4-DCP=2000 mg/L,Pt=4.0MPa,pH0=11.0,Temp.=473 K,反應時間為15 min之層析圖) 4-32
圖4-27 添加觸媒於連續式WAO中處理2,4-二氯酚,偵測器波長為280 nm(Initial conc. of 2,4-DCP=400 mg/L,Pt=3.0MPa,pH0=11.0,Temp.=433 K,空間流速4.0 hr-1之層析圖)
4-34


頁數
圖4-28 添加觸媒於連續式WAO中處理2,4-二氯酚,偵測器波長為230 nm(Initial conc. of 2,4-DCP=400 mg/L,Pt=3.0 MPa,pH0=11.0,Temp.=433 K,空間流速4.0 hr-1之層析圖)
4-34
圖4-29 推測2,4-二氯酚濕式氧化反應路徑 4-37
圖4-30 觸媒濕式氧化過程中,溫度及觸媒對COD去除率之影響(連續式)(a)添加Mn/γ-Al2O3觸媒(b)添加Mn-Ce/γ-Al2O3觸媒 4-39
圖4-31 COD去除率常數(k)與反應溫度倒數(1000/T)之關係(添加Mn/γ-Al2O3觸媒,連續式)(a)第一階段(b)第二階段
4-41
圖4-32 COD去除率常數(k)與反應溫度倒數(1000/T)之關係(添加Mn-Ce/γ-Al2O3觸媒,連續式)(a)第一階段(b)第二階段
4-42
第六章 參考文獻
中文文獻
王國華、謝永旭、黃國書(1994),“ 光催化分解水中單氯酚污染物之控制研究 ”,中國環境工程學刊,第四卷,第三期,pp.111-118。
王逸銘、林昇佃(1999),“Au/γ-Al2O3之製備及活化條件對NO+CO反應特性影響“,第十七屆台灣區觸媒及反應工程研討會,pp.492-496。
沈孝宗(1998,7),“以波洛斯凱特觸媒催化一氧化氮還原反應之比較研究“,國立成功大學化學工程研究所碩士論文。
李定粵(1991),“觸媒的原理與應用“,正中出版社。
李炳楠,樓基中,賴俊谷(1999),”以濕式氧化法處理2,4-二氯酚水溶液之研究”,中華民國環境工程學會第二十四屆廢水處理技術研討會論文集,pp.335-340。
李炳楠,樓基中,顏伯宗(2000),“以觸媒濕式氧化法處理2,4-二氯酚水溶液之研究(I)”,第二十五屆廢水處理技術研討會,pp.563-568。
吳榮宗 (1989),“工業觸媒概論”,國興出版社。
杭州大學化學系分析化學教研室(1997),“分析化學手冊“,化學工業出版社出版,第二版,北京。
林錕松(1998,6),“2-氯酚之催化性超臨界濕式氧化之研究“,國立成功大學環境工程研究所博士論文。
林錕松、翁御棋、黃鈺軫、薛凱安、楊耀文、王鴻博(1998),“2-氯酚超臨界濕式氧化反應CuO/ZSM-5觸媒之EXAFS研究“,第廿十三屆廢水處理技術研討會論文集,pp.597-601。
施竣凱(1993,6),“濕式氧酚類廢水之動力學研究”,私立元智工學院化學工程研究所碩士論文。
胡興中(1991),“觸媒原理與應用”, 高立出版。
莊子賢(1993,6),“濕式氧化及活性污泥法處理含多成分酚類化合物廢水之研究“,私立元智大學化學工程研究所碩士論文。
高志明(1994,6),”高溫水解併同濕式氧化處理鐵氰錯化合物之研究”,國立中央大學環境工程研究所碩士論文。
張必杰(1995,7),“以濕式氧化法理印刷電路板顯像、去墨/剝膜廢液之研究“,國立中央大學環境工程研究所碩士論文。
許雄淙(1993,6),“濕式氧化法處理高濃度含氰廢液之研究“,國立台灣大學環境工程研究所碩士論文。
陳嘉雲、趙佳蓉(2000),“ 鉑金屬在不同擔體上性質的探討“,第十八屆台灣區觸媒及反應工程研討會,pp.437-440。
曾四恭、習良孝(1992), “廢水中2,4-二氯酚對活性污泥之影響”,中國環境工程學刊,第二卷,第一期,pp.43-50。
楊平義(2000,7),“金屬離子對臭氧化分解2-氯酚效能增進之探討與研究“,國立交通大學環境工程研究所碩士論文。
楊家明(2000,6),“以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究“,國立中央大學化學工程研究所碩士論文。
楊博渝(1998,6),“混合型金屬氧化物觸媒應用於焚化二氯甲烷之研究“,國立中山大學環境工程研究所碩士論文。
鄒琮湣(1998,6),“以觸媒濕式氧化法處理鐵氰錯化合物之研究 “,國立中山大學環境工程研究所碩士論文。
樓基中,李炳楠,顏伯宗 (2001),“以觸媒濕式氧化法處理人工配製2,4-二氯酚水溶液及處理液之Microtox®生物毒性初探”,第七屆海峽兩岸環境保護學術研討會,武漢,上卷, pp.210-215.
盧明俊、陳重男、林欣棟、張國泰(1999), “比較2-氯酚在UV及UV/TiO2/Fe(+3)程序中之分解途徑”, 第六屆海峽兩岸環境保護研討會,台灣高雄,pp.1169-1173。
謝永旭、王國華(1993),“利用二氧化鈦進行2-氯酚光催化分解之研究”,興大工程學報第四期,pp.85-92。
顧洋、蘇恆弘(1999),“以過氧化氫/臭氧程序處理二氯酚水溶液反應行為之研究”,第24屆廢水處理技術研會論文集pp.149- 442。

英文文獻
Alec A. Klinghoffer, Ramon L. Cerro, Martin A. Abraham (1998), “Catalysis Wet Oxidation of Acetic Acid Using Platinum on Alumina Monolith Catalyst“, Catalysis Today, Vol.40, pp.59-71.
Atul D. Dhale and Vijaykumar V. Mahajani (1999), “Reactive Dye House Wastewater Treatment. Use of Hybrid Technology: Membrane, Sonication Followed by Wet Oxidation “, Ind. Eng. Chem. Res., Vol.38, pp.2058-2064.
Augustine, S.M. G.N. Alameddin, and W.M.H. Sachtler (1989), “The Effect of Re, S, and Cl on the Deactivation of Pt/g-Al2O3 Reforming Catalysts,” J. of Catalysis, Vol. 115, pp. 217-232.
Barbier J. Jr., F. Delanoë, F. Jabouille, D. Duprez, G. Blanchard, and P. Isnard (1998),“Total Oxidation of Acetic Acid in Aqueous Solutions over Noble Metal Catalysts”, J. of Catalysis, Vol.177, pp.378-385.
Benenek, S., E. Fedrorynska, and P. Winiarek (1993),“Investigation of the Acidity of Ni/Al2O3 and Ni/SiO2-Al2O3 Catalysts “, React. Kinet. Catal. Lett., Vol.51, pp.89-95.
Callahan, M. A., Slimak, M. W., Gabel, N.W., May, I. P., Fowler, C., Freed F., J. R., Jennings, P., Durfee, R. L., Whitmore, F. C., Maestri, , Mabey B., W. R., Holt, B. R., Gould, C. (1979), Water-related Environmental Fate of 129 Priority Pollutants, USEPA, EPA-440-4-79-029b, Vol. II, pp.841-848.
Chang, C. J., J. C. Lin and C. K. Chen (1994), “Effects of Temperture and Cu2+ Catalyst on Liquid-phase Oxidation of Industrial Wastewater,” J. Chem. Tech. Biotechnol., Vol. 57, pp. 355-361.
Chowdhury A.K., Copa W.C. (1996),“ Wet Air Oxidation of Toxic and Hazardous Organics in Industrial Wastewater “, Indian Chemical Engineer. , Vol.28, No.3, pp.3-11.
Dietrich M. J., T. L. Randall, and P. J. Canney (1985), “Wet Air Oxidation of Hazardous Organicity in Wastewater“, Environmental Progress, Vol.4, No.3, pp.171-177.
Clayton B., Maugans Aydin Akgerman (1997),“ Catalytic Wet Oxidation of Phenol over a Pt/TiO2 Catalyst “, Wat. Res., Vol. 31, No.12, pp.3116-3124.
Daifullah-AAM, Girgis-BS (1998),“Removal of Some Substituted Phenols by Activated Carbon Obtained from Agricultural Waste “, Water Research, Vol 32, Iss 4, Pp 1169-1177.
Danis T.G., Albanis T.A., Petrakis D.E.and Pomonis P.J. (1998), “ Removal of Chlorinated Phenols from Aqueous Solutions by Adsorption on Alumina Pillared Clays and Mesoporous Alumina Aluminum Phosphates “, , Wat. Res. , Vol.32, No.2, pp.295-302.
Duprez D., F. Delanoë, J. Barbier Jr, P. Isnard, G. Blanchard (1996), “Catalytic Oxidation of Organic Compounds in Aqueous Media”, Catalysis Today, Vol.29, pp.317-322.
Exon-JH, Osborne-CA, Koller-LD, Henningsen-GM (1984), “Toxicologic, Pathologic, and Immunotoxic Effects of 2,4-Dichlorophenol in Rats” , Journal of Toxicology and Environmental Health, Vol. 14, Iss.5-6, pp.723-730.
Ewa Lipczynska-Kochany, James R.Bolton (1992),“Peroxide Mediated Photodegradation of 4-Chlorophenol As Studied by a Flash Photolysis/HPLC Technique “, Environ. Sci. Technol., Vol.26, No. 2, pp.259-261.
Gil. A., A. Diaz., L. M. Gandia, and M. Montes (1994), “Influence of the Preparation Method and Nature of the Support on the Stability of Nickel Catalysts, Appl. Catal. A: General, Vol.109, pp.167-179.
Hamoudi, S., F. Larachi, and A. Sayari (1998), “Wet Oxidation of Phenolic Solutions over Heterogeneous Catalysts: Degradation Profile and Catalyst Behavior,” J. of Catalysis, Vol. 177, pp. 247-258.
Imamura S., D. Akira (1985), “Wet Oxidation of Ammonia Catalyzed by Cerium Based Composite Oxides “, Ind. Eng. Chem. Prod. Res. Dev., Vol.24, No.1, pp.75-80.
Imamura, S., I. Fukuda and S. Ishida (1988), “Wet Oxidation Catalyzed by Ruthenium Supported on Cerium (IV) Oxides,” Ind. Eng. Chem. Res., Vol. 27, pp. 718-726.
Jelka Donlagic, Janez Levec (1998),“Dose the Catalytic Wet Oxidation Yield Products More Amenable to Biodegradation“, Appl. Catal. B:Environmental, Vol.17, pp.L1-L5.
Jiangyan Qin, Qinglin Zhang, Karl. T. Chuang (2001),“ Catalytic Wet Oxidation of p-Chlorophenol over Supported Noble Metal Catalysts“, Appl. Catal. B:Environmental, Vol.29, pp.115-123.
Kanters-MJ Vannispen-R Louw-R Mulder-P (1996),“Chlorine Input and Chlorophenol Emission in the Lab-Scale Combustion of Municipal Solid-Waste”, Environmental Science & Technology, Vol 30, Iss 7, pp.2121-2126.
Kieβling D., R. Schneider, P. Kraak, M. Haftendorn, G. Wendt (1998), “Perovskite-Type Oxides-Catalysts for the Total Oxidation of Chlorinated Hydrocarbons “, Appl. Catal. B:Environmental, pp.143-151.
Khaled Belkacemi, Faical Larachi, Safia Hamoudi, Ginette Turcotte, and Abdelhamid Sayari (1999),“Inhibition and Deactivation Effects in Catalytic Wet oxidation of High-Strength Alcohol-Distillery Liquors “, Ind. Eng. Chem. Res., Vol.38, pp.2268-2274.
Kuo-WS (1999),“Synergistic Effects of Combination of Photolysis and Ozonation on Destruction of Chlorophenols in Water “, Chemosphere, Vol 39, Iss 11, pp 1853-1860.
Lecheng Lei, Xijun Hu and Po-Lock Yue (1998), “ Improved Wet Oxidation for the Treatment of Dyeing Wastewater Concentrate from Membrane Separation Process “, Wat. Res., Vol. 32, No.9, pp.2753-2759.
Li L., P. Chen, E. F. Gloyna (1991), “Generalized Kinetic Model for Wet Oxidation of Organic Compounds “, AIChE J., Vol.37, pp.1687-1697.
Li L., N. Crain, E. F. Gloyna (1996), “Kinetic Lumping Applied to Wastewater Treatment “, Water Environ. Res., 68, pp. 841-854.
Lough W. J., I. W. Wainer (1996), High Performance Liquid Chromatography Fundamental Principles and Practice, New York; Chapman & Hall.
Luck F. (1999),“ Wet Air Oxidation: Past, Present and Future “, Catalysis Today, Vol.53, pp.81-91.
Mantzavinos M., R. Hellenbrand, A. G. Livingston and I.S. Metcalfe (1997), “ Reaction Mechanisms and Kinetics of Chemical Pretreatment of Bioresistant Organic Molecules by Wet Air Oxidation ”, Water Sci. Tech., Vol. 35, No. 4, pp. 119-127.
Mirjam, H. Schoonenboom, Hans E. Zoetmeijer, Kees Olie (1995), “Dechlorination of Octachlorodibenzo-p-Dioxin and Octachlorodibenzofuran on an Alumina Support“, Applied Catalysis B: Environmental, Vol.6, pp.11-20.
Miro C., A. Alejandre, A. Fortuny, C. Bengoa, J. Font and A. Fabregat (1999),“ Aqueous Phash Catalytic Oxidation of Phenol In A Trickle Bed Reactor: Effect of pH “, Wat. Res., Vol. 33, No.4, pp.1005-1013.
Mishra V.S., V.V. Mahajani, J.B. Joshi (1995),“Wet Air Oxidation”, Ind. Eng. Chem. Res., Vol.34, iss. 1, pp.2-48.
Oliver J. H., K. P. Kotu, M. C. Jin, P. D. Allen, and W. M. Stephen (1993),“ Factor Affecting Wet Air Oxidation of TNT Red Water: Rate Studies”, Journal of Hazardous Materials, Vol.34, pp.51-68.
Okal, J., L. Kepióki, L. Krajczk, and M. Drozd (1999), “Oxidation and Redispersion od a Re/g-Al2O3 Catalyst,” J. of Catalysis. , Vol. 188, pp. 140-153.
Pierre Gallezot, Nathalie Laurain, Pascal Isnard (1996),“Catalytic Wet-Air Oxidation of Carboxylic Acids on Carbon-Supported Platinum”, Applied Catalysis B: Environmental, Vol.9, pp.L11-L17.
Qinglin Zhang, Karl T. Chuang (1998), “Kinetics of wet oxidation of black liquor over a Pt-Pd-Ce/alumina catalyst “, Applied Catalysis B: Environmental, Vol.17, pp.321-332.
Qin, J. and K.I. Aika, “Catalytic Wet Air Oxidation of Ammonia over Alumina Supported Metals (1998),” Applied Catalysis B: Environmental, Vol. 16, pp. 262-268.
Rivas, F. J., S. T. Kolaczkowski, F. J. Beltrán and D. B. mcLurgh (1998), “ Development of a Model for the Wet Air Oxidation of Phenol Based on a Free Radical Mechanism ”, Chem. Eng. Sci., Vol. 53, No. 14, pp. 2575-2586.
Vallecillo-A Garciaencina-PA Pena-M (1999),“Anaerobic Biodegradability and Toxicity of Chlorophenols“, Water Science and Technology, Vol 40, Iss 8, pp 161-168.
Voorhoeve R. J. H., D. W. Johnson Jr., J. P. Remeika, P. K. Gallagher (1977), Perovskite Oxides: Materials Science in Catalysis, Science, 195, 827.
Willms R. S., M. B. Anne, D. R. Danny, M. W. David, and P. H. Douglas (1987),“Aqueous-phase Oxidation: The Intrinsic Kinetics of Single Organic Compounds”, Ind. Eng. Chem. Res., Vol.26, No.1, pp.148-154.
William C., J. Heimbuch, and P. Schaefer (1988), “Demonstration of Wet air Oxidation of Hazardous Waste”, Incineration Hazardous Wastes, pp.261-269.
Safia Hamoudi, Faïcal, Graciela Cerrella, Myrian Gassanello (1998),“ Wet Oxidation of Phenol Catalyzed by Unpromoted and Platinum-Promoted Manganese/Cerium Oxide ”, Ind. Eng. Chem. Res., Vol.37, pp.3561-3566.
Safia Hamoudi, Khaled Belkacemi, Faïcal Larachi (1999), “ Catalytic Oxidation of Aqueous Phenolic Solutions Catalyst Deactivation and Kinetics“, Chemical Engineering Science, Vol.54, pp.3569-3576.
Salasc S., V. Perrichon, M. Chevrier, F. Mathis, N. Moral (1999), “ Magnetic Study of the Interaction of Hydrogen with a Pt/CeO2-Al2O3 Catalyst:Influence of the Presence of Chlorine “, Catalysis Today, pp.227-235.
Spronk, R., J.A.R. Van Veen, and J.C. Mol (1993), “The Effect of the Calcination Temperature on the Activity of Re2O7/g-Al2O3 Catalysts for the Metathesis of Propene,” J. of Catalysis, Vol. 144, pp. 472-483.
Stanislaus-A, Absihalabi-M, Aldolama-K (1989),“ Effect of Nickel on the Surface-Acidity of Gamma-Alumina and Alumina-Supported Nickel-Molybdenum Hydrotreating Catalysts “, Appl. Catal. A:General, Vol.50, Iss.3, pp 237-245.
Standard Method for the Examination of Water and Wastewater (1992), 18th edition, APHA AWWA WEF, pp.5-13~5-14.
Taguchi Junji, Teruyuki Nakato, and Toshio Okuhara (1999), “ Selective Oxidative Decomposition of Ammonia in Water to Nitrogen Catalyzed by Platinum-supported Titania “, Chemistry Letters, pp.277-278.
Tomasko-DL Macnaughton-SJ Foster-NR Eckert-CA (1995), “Removal of Pollutants from Solid Matrices Using Supercritical Fluids”, Separation Science And Technology, Vol 30, Iss 7-9, Pp 1901-1915.

網址
1.美國Zimpro公司網站
http://zimpro.usfilter.com/products/industrial/wetair-ind.htm
2.環保署水質檢測方法,(84)環署檢字第02011號(NIEA W417.50T)
http://www.niea.gov.tw/niea/WATER/W41750T.htm
3.環保署水質檢測方法,(89)環署檢字第67626號(NIEA W510.54B)
http://www.niea.gov.tw/niea/WATER/W51054B.htm
4.環保署水質檢測方法,(87)環署檢字第10816 號(NIEA W515.53A)
http://www.niea.gov.tw/niea/WATER/W51553A.htm
5.SRC's Environmental Science 的網站
http://esc.syrres.com/
6.Dionex的網址
http://www.dionex.com/app/tree.taf?asset_id=9228
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top