跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳麗慧
研究生(外文):Li-Hui Chen
論文名稱:數學解題反思教學對國小五年級學童數學解題能力之影響
論文名稱(外文):The Effects of Teaching Reflection upon Mathematical Problem Solving on Task Performance
指導教授:鄭婉敏鄭婉敏引用關係
學位類別:碩士
校院名稱:臺中師範學院
系所名稱:國民教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:數學解題數學解題策略反思
外文關鍵詞:problem solvingproblem solving strategiesreflection
相關次數:
  • 被引用被引用:16
  • 點閱點閱:722
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:7
摘 要
本研究旨在探討數學解題反思教學對提昇數學解題能力的立即效果和延宕效果,以及學生對數學解題反思教學的看法,以供教師教學之參考。
本研究之「數學解題教學」係依據Polya的「四個解題歷程和策略」,融合認知取向之建構教學精神和「數與量」的學習原理設計而成。在教學中,先由小組針對範例題作討論並合作解題,再利用師生對話、互動、腦力激盪,以引發多元、有創意的解題方法。而「數學解題反思教學」是承續每一範例題的教導後,由教師示範該範例之數學解題的反思,實驗組學生揣摩反思並記錄反思結果,控制組則不教導反思。
本研究採獨立樣本單因子實驗設計,以台北市木柵區一所小學五年級共64名學生為研究對象,依班級分派為實驗組和控制組。兩組學生各接受每週兩次,每次約40分鐘,共計十四週之相同教學方式的數學解題教學活動,其中,不同的實驗處理是:在解題教學中實驗組學生接受每次約15至20分鐘之反思數學解題的教學,而控制組則未接受。依變項則為數學解題能力,包括「解題的合理與正確」以及「解題方法的創意」。教學後比較兩組學生在數學解題能力之立即效果和延宕效果的差異,以及調查實驗組學生對數學解題反思教學的看法。為驗證假設,採用單因子多變項共變數分析,其中的共變項為智力及數學能力。本研究的主要發現如下:
一、數學解題反思教學對提昇數學解題能力沒有立即效果,亦即兩組學生
於實驗課程結束後一週內,在「立即後測用數學解題能力測驗」之「解
題的合理與正確」、「解題方法的創意」的表現上並未有顯著差異。
二、數學解題反思教學對提昇數學解題能力具有延宕效果,亦即兩組學生
於實驗課程結束後第五週,在「延宕後測用數學解題能力測驗」之「解
題的合理與正確」、「解題方法的創意」的表現上有顯著差異。
三、數學解題反思教學對於學生的數學解題學習有正面的影響。
本研究並針對研究結果,提出對教學與後續研究的建議。
The Effects of Teaching Reflection upon Mathematical Problem Solving on Task Performance
Li-Hui Chen
ABSTRACT
The objectives of this study were to investigate both the immediate effects and the long-term effects of the instruction by teaching fifth graders to reflect on their mathematical problem solving, and to explore students’ viewpoints of the instruction related to reflection.
The instruction of reflecting on mathematical problem solving in this study employed Polya’s four—step process for solving problems. It asked students to collaborate on mathematical problem solving, then each individual student reflected on the process for problem solving with writing down on the reflection sheet.
There were two levels of experimental treatment in the study: (a) students collaborated on mathematical problem solving only (the control group); (b) students collaborated on mathematical problem solving and reflected on the process for problem solving (the experimental group).
Sixty-four fifth graders in two classes were selected as subjects from an elementary school in Taipei Wen-Shan district, and were randomly assigned to the two different groups. The experiment was conducted over seven-week periods, for 80 minutes each week. A single factorial design was employed. The dependent variables were (a) scores of “the reasonableness and correctness of mathematical problem solving” and (b) scores of “the creativity of mathematical problem solving” on both “the immediate-test” and “the long-term-test.”
Students’ scores of “the reasonableness and correctness of mathematical problem solving” and “the creativity of mathematical problem solving” on “the immediate-test” and “the long-term-test” were analyzed individually with a multivariate analysis of covariance. Results indicated that:(a) there were no immediate effects of teaching reflection on the reasonableness and correctness of mathematical problem solving and the creativity of mathematical problem solving; (b) there were long-term effects of teaching reflection on the reasonableness and correctness of mathematical problem solving and the creativity of mathematical problem solving; (c) there were positive effects on the attitudes of mathematical problem-solving learning among students in the experimental group.
Finally, some suggestions for educational implications future research are made based on the findings and the limitations of the study.
目 錄
第一章 緒 論…………………………………………………1
第一節 研究動機與目的………………………………………1
第二節 研究問題與假設………………………………………4
第三節 名詞釋義與操作性定義………………………………5
第二章 文獻探討………………………………………………7
第一節 數學解題能力…………………………………………7
第二節 反思的意涵……………………………………………27
第三節 數學解題反思教學的設計……………………………34
第四節 數學解題反思教學之理論基礎………………………46
第三章 研究方法………………………………………………51
第一節 研究設計………………………………………………51
第二節 研究對象.……………………………………………54
第三節 研究工具.……………………………………………55
第四節 實驗程序.……………………………………………57
第五節 資料處理.……………………………………………59
第四章 研究結果與討論……………………………………60
第一節 數學解題反思教學的立即效果……………………60
第二節 數學解題反思教學的延宕效果………………………65
第三節 實驗組對數學解題反思教學的看法…………………69
第五章 結論與建議……………………………………………76
第一節 結論……………………………………………………76
第二節 建議……………………………………………………78
第三節 本研究之限制…………………………………………81
參考文獻……………………………………………………83
一、中文部分………………………………………………83
二、英文部分………………………………………………85
附錄
附錄一 反思活動單………………………………………………94
附錄二 數學解題能力測驗………………………………………96
附錄三 數學解題能力的評量標準………………………………100
附錄四 數學解題反思教學課後調查表…………………………101
附錄五 數學解題教學課程活動設計簡案………………………103
附錄六 共同訂定之公約…………………………………………129
附錄七 本課程之契約書…………………………………………130
附錄八 範例作業單、反思活動單與練習作業單之舉例………131
表次與圖次
表2-1 學者對於數學解題不同階段之策略使用的建議……………15
表2-2 Tishman等人的四步驟思考……………………………………16
表2-3 Heller與Greeno 所作之生手和專家的差異分析……………23
表2-4 五年級上學期學童之基本數學能力…………………………40
表3-1 實驗組和控制組的處理………………………………………52
表3-2 本研究之立即效果實驗設計…………………………………53
表3-3 本研究之延宕效果實驗設計…………………………………53
表3-4 研究對象人數統計表…………………………………………54
表3-5 數學解題能力測驗的預試結果………………………………56
表4-1 兩組受試者在四年級下學期的「瑞文氏非文字推理智力測驗」得分、五年
級上學期數學三次月考平均得分的平均數與標準差………………61
表4-2 兩組受試者在「立即後測用數學解題能力測驗」兩分項得分的平均數與標準差……………………………………………………………61
表4-3 兩組受試者在「立即後測用數學解題能力測驗」兩分項平均得分的多變項
及單變項共變數分析摘要表….…………………………………62
表4-4 兩組受試者在「立即後測用數學解題能力測驗」之「解題的合理與正確」
得分以及「解題方法的創意」得分之調整後平均數及標準誤………62
表4-5 兩組受試者在「延宕後測用數學解題能力測驗」兩分項得分之平均數與標
準差…………………………………………………………66
表4-6 兩組受試者在「延宕後測用數學解題能力測驗」兩分項平均得分的多變項
及單變項共變數分析摘要表………………………………………67
表4-7 兩組受試者在「延宕後測用數學解題能力測驗」之「解題的合理與正確」
得分以及「解題方法的創意」得分之調整後平均數及標準誤………67
表4-8 實驗組在「數學解題反思教學課後調查表」中對反思教學活動相關敘述同
意度的平均數及標準差……………………………………………70
表4-9 實驗組在「數學解題反思教學課後調查表」中對數學學習相關敘述同意度
的平均數及標準差……………………………………………72
圖2-1 完整的思考模式…………………………………………………19
圖2-2 複雜思考歷程……………………………………………………20
圖2-3 自我調節能力的因素……………………………………………33
圖2-4 本研究之數學解題教學與數學解題反思教學模式……………38
圖3-1 研究架構圖………………………………………………………51
參考文獻
一、中文部分:
王文科(民80):教育研究法。台北市:五南。
朱湘吉(民81):新觀念、新挑戰--建構主義的教學系統。教學科技與媒體,2,15-20。
朱則剛(民83):建構主義知識論與情境認知的迷思-兼論其對認知心理學的意義。教學科技與媒體,2,3-14。
邱上貞(民78):初探解題歷程的理論教學。特殊教育季刊,31,1-4。
邱上貞、王惠川、朱婉豔、沈明錦(民81):國小中年級數學科解題
歷程導向之評量。特殊教育與復健學報,2,235-271。
李茂興(譯)(民87):教學心理學。台北市:弘智。
李慕華(譯)(民89):反思教學--成為一位探究的教學者。台北市:
心理出版社。
林玉體(民80):西洋教育史。台北市:文景。
林清山、張景媛(民82):國中生後設認知、動機信念與數學解題策略之關係研究。教育心理學報,26,53-74。
吳幸宜(譯)(民83):學習理論與教學應用。台北市:心理出版社。
吳碧純、詹志禹(民81):從杭士基與皮亞傑的辯論談認知心理學的走向。教育研究雙月刊,26,50-64。
徐文鈺(民85):不同擬題教學策略對兒童分數概念、解題能力與擬題能力之影響。國立台灣師範大學教育心理與輔導研究所博士論文。
涂金堂(民88):國小數學解題歷程之分析研究。初等教育學刊,7,295-332。
教育部(民82): 國民小學課程標準。台北市:教育部。
教育部(民87):國民教育階段九年一貫課程綱要。台北市:教育部。
教育部(民89):國民中小學九年一貫課程暫行綱要(第一階段)。台北市:教育部。
郭生玉(民85):心理與教育測驗。台北縣:精華。
陳淑敏(民83):Vygotsky的心理理論發展和教育。屏東師院學報,7,121-141。
陳瓊森(譯)(民86):開啟多元智能新世紀。台北市:信誼。
張新仁(民78):學習策略訓練之初探。教育文粹,18,86-94。
張英傑(民89):重構教師的課程設計能力:九年一貫數學領域課程發展之省思。北區九年一貫課程試辦學校工作坊研習手冊。台北縣:大觀國小。
張春興(民84):教育心理學。台北市:東華書局。
國立編譯館(民86):國民小學數學科教學指引第五冊至第十二冊。台北市:台灣書店。
康軒(民88):國民小數學教學指引第六至第九冊。台北縣:康軒文教。
黃敏晃(譯)(民74):數學解題。國教月刊,32(7.8),39-52。
黃敏晃(民80):淺談數學解題。教與學,23,2-15。
黃敏晃(民89):規律的尋求。台北市:心理出版社。
鄒慧英(民89):專題學習的概念介紹與評量設計示例。新世紀優質學習教育研討會手冊。台北市:教育部。
蔡崇建(民80):智力的評量與分析。台北市:心理出版社。
鄭昭明(民86):認知心理學--理論與實踐。台北市:桂冠。
鄭麗玉(民82):認知心理學--理論與實踐。台北市:五南。
鄭晉昌(民82):從「情境學習」的認知觀點探討電腦輔助教學中教材內容的設計-由幾個學科教學系統談起。教學科技與媒體,12,3-14。
劉秋木(民85):國小數學科教學研究。台北市:五南。
劉祥通、鄔瑞香、黃瓊儀(民89):從學生「數與量」部分的數學寫作分析一位國小老師的數學佈題。教育研究資訊,8(4),141-166。
劉錫麒(民80):合作反省思考的數學解題教學模式及其實證研究。國立台灣師範大學教育研究所博士論文。
譚寧君(民81):兒童數學態度與解題能力之分析探討。台北師院學報,5,619-688。
二、英文部分:
Althoen, S. C., Brown J. L., & Bumcrot R. J. (1991). Graph chasing across the curriculum: Paths, circuits and applications. In M. J. Kenney & C. R. Hirsch (Eds.), Discrete mathematics across the curriculum, K-12: 1991 yearbook. Reston, VA: National Council of Teachers of Mathematics.
Anderson, J. R. (1990). Cognitive psychology and its implications. New York: W. H. Freeman.
Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
Baron, R. W., Johnson, C. J., & Acor, S. (1998). Portfolio assessments: Involving students in their journey to success. Schools in the Middle, 7(3), 32-43.
Baroody, A. J., & Standifer, D. J. (1993). Addition and subtraction in the primary grades. In R. J. Jensen (Ed.), Research ideas for the classroom: Early childhood mathematics (pp. 72-102). New York: Macmillan.
Bernstein, M., Conway, B. E., Ketron, J. L., & Sternberg, R. J. (1981). People’s conceptions of intelligence. Journal of Personality and Social Psychology, 41, 37-55.
Biehler, R. F., & Snowman, J. (1990). Psychology applied to teaching (6th ed.). Boston: Houghton Mifflin.
Borkowski, J. G., & Kurtz, B. E. (1984). Children’s metacognition: Exploring relations among knowledge, process, and motivational variables. Journal of Experimental Child Psychology, 37(2), 335-354.
Borkowski, J. G., & Kurtz, B. E. (1985). Metacognition and the development of strategic skills in impulsive and reflective children. Portions of this paper were presented at the Biennial Meeting of the Society for Research in Child Development, West Germany. (ERIC Document Reproduction Service No. ED 257 572)
Broekman, H. (2000). Problem solving and problem posing are an important part of mathematics education, but how do we give our children a chance to learn these skills. Mathematics in School, 29(5), 14-16.
Bruner, J. S., Olver, R. R., & Greenfield, P. M. (1966). Studies in cognitive growth. New York: Wiley.
Cesare, C., & Daniela, L. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition, 3(2), 121-139.
Charles, R. I., & Lester, F. K. (1984). An evaluation of a process-oriented instructional program in mathematical problem solving in grades 5 and 7. Journal for Research in Mathematics Education, 15(1), 15-34.
Charles, R., Lester, F. K., & O’Daffer, P. G. (1987). How to evaluate progress in problem solving. Reston, VA: National Council of Teachers of Mathematics.
Clemson, D., & Clemson, W. (1994). Mathematics in the early years. New York: Routledge.
Covington, M. V. (1989). The motive for self-worth. In R. E. Ames & C. Ames (Eds.), Research on motivation in education (Vol. 1, pp. 106-107). Orlando, FL: Academic Press.
Denvir, B. (1988). What are we assessing in mathematics and what are we assessing for? In D. Pimm (Ed.), Mathematics, teachers and children (pp. 129-140). London: The Open University.
Dienes, Z. P. (1969). An elementary mathematics program. (ERIC Document Reproduction Service No. ED 031 397)
Driscoll, M. P. (2000). Psychology of learning for instruction (2nd ed.). Boston: Allyn & Bacon.
Ertmer, P. A., & Newby, T. J. (1996). The expert learner: Strategic, self-regulated, and reflective. Instructional Science, 24(1), 1-24.
Fennema, E., & Franke, M. L. (1992). Teachers’ knowledge and its impact. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 147-164). New York: Macmillan.
Flavell, J. H. (1985). The nature and development of metacognition. In J. H. Flavell (Ed.), Cognitive development (2nd ed., pp. 28-44). Hillsdale, NJ: Prentice-Hall.
Gagne, R. M. (1985). The conditions of learning and theory of instruction (4th ed.). New York: Holt, Rinehart and Winston.
Geary, D. C. (1994). Children’s mathematical development: Research and practical applications. Washington, DC: American Psychological Association.
Glaser, R. (1984). Education and thinking: The role of knowledge. American Psychologist, 39(2), 93-104.
Glenda, A.(1996). Active learning in a constructivist framework. Educational Studies in Mathematics, 31(4), 349-369.
Gredler, M. E. (1997). Learning and instruction (3rd ed.). Upper Saddle River, NJ: Merrill.
Greeno, J. G. (1968). Thinking, problem solving, and understanding. In J. G. Greeno (Ed.), Elementary theoretical psychology (pp. 196-227). Reading, MA: Addison-Wesley.
Harrison, A. W., Rainer, R. K., Hochwarter, W. A., & Thompson, K. R. (1997). Testing the self-efficacy-performance linkage of social-cognitive theory. Journal of Social Psychology, 137(1), 79-87.
Hembree, R., & Marsh, H. (1993). Problem solving in early childhood: Building foundations. In Jensen R. J. (Ed.), Research ideas for the classroom: Early childhood mathematics (pp. 151-170). New York: Macmillan.
Hollands, R. D. (1972). Educational technology: Aims and objectives in teaching mathematics. Mathematics in School, 1(2).
Holmes, E. E. (1995). New directions in elementary school mathematics. Englewood Cliffs, NJ: Prentics-Hall.
Iowa State Dept. of Edu. (1989). A guide to developing higher order thinking across the curriculum. (ERIC Document Reproduction Service No. ED 306 550)
Jerry, E. F. (1999). Kids teaching kids: An ethnographic study of children’s strategies for presenting in a 5th grade science class. Occasional paper No. 1. (ERIC Document Reproduction Service No. ED 432 475)
Kahney, H. (1993). Problem solving: Current issues (2nd ed.). Philadelphia: Open University Press.
Kaplan, R. G., Yamamato T., & Ginsburg, H. P. (1989). Teaching mathematics concepts. In L. B. Resnick & L. E. Klopfer (Eds.), Toward the thinking curriculum: Current cognitive research (pp. 59-82). 1989 yearbook of the Association for Supervision and Curriculum Development. Alexandria, VA: ASCD.
Katherine, S. C., & Judith, A. K. (1991). Cooperative learning instruction: Effects of wanting or not wanting to participate on mathematics achievement. (ERIC Document Reproduction Service No. ED 353 236)
Kayo, M. (1994). Acquiring mathematical knowledge through semantic and pragmatic problem solving. Human Development, 37(4), 220-232.
Klauer, K, J. (1996). Teaching inductive reasoning: Some theory and three experimental studies. Learning and Instruction, 6(1), 37-57.
Kozulin, A. (1994). The cognitive revolution in learning Piaget and Vygotsky. In C. C. Block & J. N. Mangieri (Eds.), Creating powerful thinking in teachers and students: Diverse perspectives (pp. 269-287) Orlando, FL: Harcourt Brace.
Krumholtz, N. (1989). Modelling and metaphors: Power and risks. In W. Blum, J. S. Berry, R. Biehler, I. D. Huntley, G. Kaiser-Messmer, & L. Profke (Eds.), Applications and modeling in learning and teaching mathematics (pp. 81-87). Chichester, England: Ellis Horwood.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago.
Lubart, T. I. (1994). Creativity. In R. J. Sternberg (Ed.), Thinking and problem solving (pp. 290-332). San Diego, CA: Academic Press.
Lumsden, L. S. (1995). To learn or not to learn: Understanding student motivation. OSSC Report, 35(2), 1-11.
Margaret, I. F. (1988). Fifth grade teachers and their students: An analysis of beliefs about mathematical problem solving. (ERIC Document Reproduction Service No. ED 310 912)
Mayer, R. E. (1987). Educational psychology: A cognitive approach. Boston: Brown.
McCown, R., Driscoll, M., & Roop, P. G. (1996). Educational psychology: A learning—centered approach to classroom practice (2nd ed.). Boston: Allyn & Bacon.
Meichenbaum, D., Burland, S., Gruson, L., & Cameron, R. (1985). Metacognitive assessment. In S. R. Yussen (Ed.), The growth of reflection in children (pp. 1-30). New York: Academic Press.
Miller, P. H. (1993). Theories of developmental psychology (3rd ed.). New York: W. H. Freeman.
Moore, J. L., & Rocklin, T. R. (1998). The distribution of distributed cognition: Multiple interpretations and uses. Educational Psychology Review, 10, 97-113.
Nickerson, R. S. (1994). The teaching of thinking and problem solving. In R. J. Sternberg (Ed.), Thinking and problem solving (pp. 409-460). San Diego, CA: Academic Press.
Orton, A. (1992). Learning mathematics: Issues, theory and classroom practice (2nd ed.). New York: A. Orton.
Orton, A., & Frobisher, L. (1996). Assessing mathematical attainment. In J. Solity (Ed.), Insights into teaching mathematics (pp. 167-179). London: Cassell.
Owen, E., & Sweller, J. (1989). Should problem solving be used as a learning device in mathematics? Journal for Research in Mathematics and Education, 20(3), 321-328.
Palincsar, A. S., Ransom, K., & Derber, S. (1988/89). Collaborative research and development of reciprocal teaching. Educational Leadership, 46(4), 37-40.
Paris, S. G., & Byrnes, J. P. (1989). The constructivist approach to self-regulation and learning in the classroom. In B. J. Zimmerman & D. H. Schunk (Eds.), Self-regulated learning and academic achievement: Theory, research, and practice (pp. 183-186). New York: Spring-Verlag.
Perkins, D. N. (1991). Technology meets constructivism: Do they make a marriage? Educational Technology, 31(5), 18-23.
Petit, M., & Zawoiewski, J. S. (1997). Teachers and students learning together about assessing problem solving. Mathematics Teacher, 90(6), 472-477.
Polya, G. (1971). How to solve it: A new aspect of mathematical method (2nd ed.). Princeton, NJ: Princeton University Press.
Pressley, M., & McCormick, C. B. (1995). Cognition, teaching and assessment. New York: Harper Collins College.
Rey, R. E., Suydam, M. N., & Lindquist, M. M. (1998). Helping children learn mathematics (5th ed.). Boston: Allyn and Bacon.
Rowan, T. E., & Morrow, L. J. (1993). Patterns, relations, functions, and algebra. In T. E. Rowan & L. J. Morrow (Eds.), Implementing the K-8 curriculum and evaluation standards: Readings from the arithmetic teacher (pp. 84-90). Reston, VA: National Council of Teachers of Mathematics.
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334-370). New York: Macmillan.
Schoenfeld, A. H. (1994). Reflections on doing and teaching mathematics. In A. H. Schoenfeld (Ed.), Mathematical thinking and problem solving (pp. 53-71). Hillsdale, NJ: Lawrence Erlbaum.
Schunk, D. H. (1987). Peer models and children’s behavioral change. Review of Educational Research, 57, 149-174.
Schunk, D. H. (1998). Goal and self-evaluative influences during children’s cognitive skill learning. American Educational Research Journal, 33(2), 359-382.
Schunk, D. H. (1999). Social-self interaction and achievement behavior. Educational Psychologist, 34(4), 219-227.
Schunk, D. H., & Zimmerman B. J. (1997). Social origins of self-regulatory competence. Educational Psychologist, 32(4), 195-208.
Shimizu, Y., & Lambdin, D. V. (1997). Assessing students’ performance on an extended problem-solving task: A story from a Japanese classroom. The Mathematics Teacher, 90(8), 658-664.
Shin, M. (1998). Promoting students’ self-regulation ability: Guidelines for instructional design. Educational Technology, Jan./Feb., 38-44.
Slavin, R. E. (1997). Educational psychology: Theory into practice (5th ed.). Needham Heights, MA: Allyn & Bacon.
Sovik, N., Frostrad P., & Heggberget, M. (1999). The relation between reading comprehension and task-specific strategies used in arithmetical word problems. Scandinavian Journal of Educational Research, 43(4), 371-399.
Steele, D. F., & Arth, A. A. (1998). Math instruction and assessment: Preventing anxiety, promoting confidence. Schools in the Middle, 7(3), 44-48.
Sternberg, R. J. (Ed.). (1994). Thinking and problem solving. San Diego, CA: Academic Press.
Sternberg, R. J. (1996). Cognitive psychology. Fort Worth, TX: Harcourt Brace.
Sternberg, R. J. (1998). Principles of teaching for successful intelligence. Educational Psychologist, 33(2/3), 65-72.
Suydam, M. N. (1982). Update on research on problem solving: Implications for classroom teaching. The Arithmatic Teacher, 29, 56-60.
Suydam, M. N., & Weaver, J. F. (1977). Research on problem-solving: Implications for elementary school classrooms. The Arithmetic Teacher, 25(2), 40-42.
Trafton, P. R. (1980). Assessing the mathematics curriculum today. In M. M. Lindquist (Ed.), Selected issues in mathematics education (pp. 9-26). Berkeley, CA: McCutchan.
Winograd, P., & Paris, S. G. (1988/89). A cognitive and motivational agenda for reading instruction. Educational Leadership, 46(4), 30-36.
Wright, J. H. (1992). Reflections on reflection. Learning and Instruction, 2(1), 59-68.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top