跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/07 14:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭丞良
研究生(外文):Cheng-Liang Cheng
論文名稱:鋰離子在含非溶劑之PAN系膠態高分子電解質中傳導行為之研究
論文名稱(外文):Conductive Behavior of Lithium Ions in Polyacrylonitrile-based Gel Polymer Electrolyte Containing Non-solvent
指導教授:萬其超萬其超引用關係王詠雲
指導教授(外文):Chi-Chao WanYung-Yun Wang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:116
中文關鍵詞:膠態高分子電解質相分離鋰電池傳導機制
外文關鍵詞:gel polymer electrolytephase separationlithium batterytransport mechanism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:233
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鋰二次電池因具有高能量密度、高工作電壓、重量輕等優點,在二次電池市場上需求急遽擴充。其中以高分子為電解質之鋰高分子二次電池,除了承襲原本鋰二次電池的優點外,還兼具生產及形狀因子上的彈性,非常符合電子產品的要求,因此近年來的相關研究備受期待與矚目。
本實驗的目的是希望藉由加入高分子的非溶劑於膠態高分子電解質系統中,達到降低高分子所需的含量,而同時能形成凝膠而固化。並以傅立葉紅外線光譜(FTIR)、 掃描式電子顯微鏡(SEM)、交流阻抗分析法(AC-impedance spectroscopy)、螢光光譜(Luminescence Spectrum)等儀器,探討非溶劑對膠態高分子電解質的影響,諸如:鋰離子的傳導機制、離子導電度、電化學穩定度、與鋰金屬的界面性質、充放電特性以及黏著性等。
實驗結果顯示,加入非溶劑於高分子電解質中,高分子可在較低的濃度即可形成凝膠而固化。含非溶劑PAN系膠態高分子電解質會有相分離的現象發生,使電解質膜具有孔洞結構,且微觀黏度下降而有助於鋰離子的傳遞,進而提高離子導電度。含非溶劑PAN系膠態高分子電解質的室溫導電度均超過10-3Scm-1,且氧化極限電位高達4.7V vs. Li/Li+以上。此外,實驗也觀察到膠態高分子電解質的成膜方式,亦會對電極與隔離膜間的黏著力有影響。
目 錄
摘要……………………………………………………………………Ⅰ
謝誌……………………………………………………………………Ⅱ
目錄……………………………………………………………………Ⅲ
表目錄…………………………………………………………………Ⅴ
圖目錄…………………………………………………………………Ⅵ
第一章緒論………………………………………………………1
1-1前言………………………………………………………………1
1-2鋰二次電池概論…………………………………………………2
1-3研究動機與目的…………………………………………………7
第二章文獻回顧…………………………………………………9
2-1 高分子電解質簡介………………………………………….9
2-1.1 高分子電解質的種類………………………………………10
2-1.2 固態高分子電解質…………………………………………12
2-1.3 膠態高分子電解質………………………………………15
2-1.4 多孔性高分子電解質……………………………………18
2-1.5 分子補強型高分子電解質………………………………20
2-2 高分子電解質的傳導機制……………………………………22
2-2.1 固態高分子電解質的傳導機制…………………………22
2-2.2 膠態高分子電解質的傳導機制…………………………26
2-3 PAN系膠態高分子電解質………………….………..………28
2-4高分子電解質的發展現況………………….…………………32
第三章實驗方法與設備…………………………………………37
3-1 儀器設備………………………………………………………37
3-2 實驗藥品………………………………………………………38
3-3 膠態高分子電解質的製備方法 …………………………...…39
3-4 塑化劑的選擇─高分子溶液熱力學…………………………39
3-5 膠態高分子電解質的基本性質測定…………………………..43
3-5.1 FTIR光譜分析………………………………………………...43
3-5.2微觀黏度之量測……………………………………………....43
3-5.3 SEM觀測…………………………………………………....…44
3-6 膠態高分子電解質導電度之量測……………………………44
3-6.1膠態高分子電解質導電度之量測方法……………………44
3-6.2導電度量測系統……………………………………………46
3-7 電化學穩定度量測……………………………………………49
3-8 界面性質量測…………………………………………………49
3-9 電池組裝與充放電測試………………………………………50
3-10 黏著性量測……………………………………………………50
第四章實驗結果與討論……………………………………………54
4-1 PAN系膠態高分子電解質基本性質探討………………………54
4-1.1 PAN系膠態高分子之凝膠組成………………………….54
4-1.2 FTIR光譜分析結果………………………………………57
4-1.3 SEM觀測結果…………………………………………….66
4-2 PAN系膠態高分子電解質之導電行為研究……………………..71
4-2.1 微觀黏度之探討…………………………………………71
4-2.2 導電度之探討……………………………………………..73
4-2.3 導電度隨溫度變化的關係………………………………..77
4-2.4 傳導機制探討……………………………………………..79
4-3 電化學穩定度探討……………………………….……………81
4-4 界面性質之探討……………………………………………...…82
4-5 充放電測試…………………………………………………….89
4-6 黏著性測試…………………………………………………….92
第五章 結論………………………………………………………….97
附錄A 交流阻抗分析法………………………………………………99
A-1交流阻抗分析法之原理與應用………………………………99
A-2交流阻抗圖譜之分析與等效電路的建立……………………103
參考文獻…………………………………………………………….107
[1]D. Linden, Handbook of Batteries, 2nd ed., McGraw-Hill, New York, USA (1994)
[2]E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems ¾ The solid electrolyte interphase model“, J. Electrochem. Soc., 126, 2047-2051(1979)
[3]J. O. Besenhard, Handbook of Battery Materials, Wiley-VCH, Weinheim, Germany (1999)
[4]E. Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, “The SEI model ¾ application to lithium polymer electrolyte batteries”, Electrochim. Acta, 40, 2197-2204 (1995)
[5]E. Peled, D. Golodnitsky, and G. Ardel, “Advanced model for solid electrolyte interphase electrodes in liquid and polymer electrolytes”, J. Electrochem. Soc., 144, L208-L210 (1997)
[6]E. Peled, D. Golodnitsky, and J. Penciner, “The anode/electrolyte interface”, in Handbook of Battery Materials, J. O. Besenhard, Editor, 419-456, Wiley-VCH, Weinheim, Germany (1999).
[7]Y. Ein-Eli, “A new perspective on the formation and structure of the solid electrolyte interface at the graphite anode of Li-ion cells”, Electrochem. Solid-State Lett., 2, 212-214 (1999)
[8]S. B. Brummer and V. R. Koch, “The recharging of the lithium electrode inorganic electrolytes”, in Materials for Advanced Batteries, D. W. Murphy, J. Broadhead, and B. C. H. Steele, Editors, 123-143, Plenum Press, New York, USA (1980)
[9] 宋金穎,「微孔性聚偏氟乙烯高分子電解質之電化學特性研究」,博士論文,國立清華大學化工系,2000
[10]M. Winter and J. O. Besenhard, “Lithiated Carbons”, in Handbook of Battery Materials, J. O. Besenhard, Editor, 383-418, Wiley-VCH, Weinheim, Germany (1999)
[11]M. Morita, M. Ishikawa and Y. Matsuda, “Organic electrolytes for rechargeable lithium ion batteries”, in Lithium Ion Batteries: Fundamentals and Performance, Eds: M. Wakihara and O. Yamamoto, Ch.7, Wiley-VCH, Weinheim, Germany (1998)
[12]S. L. Pendalwar, J. N. Howard, G. Venugopal and M. Oliver, “Multilayered gel electrolyte bonded rechargeable electrochemical cell and method of making same”, U.S. Patent No.5716421(1998)
[13]S. L. Pendalwar, J. N. Howard, G. Venugopal and M. Oliver, “Multilayered gel electrolyte bonded rechargeable electrochemical cell”, U.S. Patent No. 5834135 (1998)
[14]G. Venugopal and A. A. Anani, “Multi-layered polymeric gel electrolyte and electrochemical cell using same”, U.S. Patent No. 5853916 (1998)
[15]G. Venugopal and J. Moore, “Method of making a multilayered gel electrolyte bonded rechargeable electrochemical cell”, U.S. Patent No. 5,837,015 (1998)
[16] 第四屆台北電池論壇論文集
[17]Kazuo Murata, “An overview of the research and development of solid polymer electrolyte”, Electrochim. Acta, 40, 2177-2184 (1995)
[18]Kazuo Murata, Shuichi Izuchi and Youetsu Yoshihisa, “An overview of the research and development of solid polymer electrolyte”, Electrochim. Acta, 45,1501-1508(2000)
[19]J. Y. Song, Y. Y. Wang and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries”, Journal of Power Sources, 77, 183-197 (1999)
[20]W. H. Meyer, “Polymer electrolyte for lithium-ion batteries”, Advenced Materials, 10, 439-448 (1998)
[21]M. B. Armand, “Current state of PEO-based electrolyte”, in Polymer Electrolyte Reviews-1, Eds: J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, Ch. 1 (1987)
[22]M. Alamgir and K. M. Abraham, “Room temperature polymer electrolytes”, in Lithium Batteries -New Materials, Developments and Perspectives, Eds: G. Pistoia, Elsevier Industrial Chemistry Library, Volume 5, Ch. 3(1994)
[23]B. Scrosati, “Lithium ion plastic batteries”, in Lithium Ion Batteries: Fundamentals and Performance, Eds: M. Wakihara and O. Yamamoto, Ch.10, Wiley-VCH, Weinheim, Germany (1998)
[24]M. Watanabe and N. Ogata, “Ionic conductivity of polymer electrolytes and future applications”, Br. Polymer J., 20, 181-192(1988)
[25]P. V. Wright, “Electrical conductivity in ionic complexes of poly(ethylene oxide)”, Br. Polymer J., 7, 319-327(1975)
[26]M. B. Armand, J. M. Chabagno and M. Duclot, Second International Meeting on Solid Electrolytes, Extended Abstract, St. Andrews, Scotland, September 20-22(1978)
[27]G. Feuillade and Ph. Perche, “Ion-conductive macromolecular gels and membranes for solid lithium cells”, J. Appl. Electrochem., 5, 63-69(1975)
[28]K. te Nijenhuis, “Thermoreversible networks: viscoelastic properties and structure of gels”, in Advances in polymer science, Springer, New York 130(1997)
[29]K. M. Abraham , M. Alamgir, and D. K. Hoffman, “Polymer Electrolytes Reinforced by Celgard® Membranes”, Journal of the Electrochemistry Soceity, 142, 683-687(1995)
[30]E. Tsuchida, H. Ohno and K. Tsunemi, “Conduction of lithium ions in polyvinylidene fluoride and its derivatives-I”, Electrochim. Acta, 28, 591-595 (1983)
[31]K. Tsunemi, H. Ohno and E. Tsuchida, “A mechanism of ionic-conduction of poly(vinylidene fluoride)-lithium perchlorate hybrid films”, Electrochim. Acta, 28, 833-837(1983)
[32]K. M. Abraham, H. S. Choe and D. M. Pasquariello, “Polyacrylonitrile electrolyte-based Li ion batteries”, Electrochim. Acta, 43, 2399-2412, (1998)
[33]K. M. Abraham and M. Alamgir, “Room temperature polymer electrolytes and batteries based on them”, Solid State Ionics, 70-71, 20-26(1994)
[34]Z. Jiang, B. Carroll and K. M. Abraham, “Studies of some poly(vinylidene fluoride) electrolytes”, Electrchim. Acta, 42, 2667-2677(1997)
[35]P. Periasamy, K. Tatsumi, M. Shikano, T. Fujieda, Y. Saito, T. Sakai, M. Mizuhata, A. Kajinami and S. Deki, “Studies on PVdF-based gel polymer electrolytes”, J. Power Sources, 88, 269-273(2000)
[36] 衛子健,「鋰電池之PMMA系膠態分子電解質之研究」,碩士論文,國立清華大學化工系,1999
[37]G. B. Appetecchi, F. Croce and B. Scrosati, “High-performance electrolyte membranes for plastic lithium batteries”, J. Power Sources, 66, 77-82(1997)
[38]A. S. Gozdz, C. N. Schmutz and J. M. Tarascon, “Rechargeable lithium intercalation battery with hybrid polymeric electrolyte”, U.S. Patent No.5,296,318(1994)
[39]A. S. Gozdz, C. N. Schmutz, J. M. Tarascon and P. C. Warren, “Polymeric electrolytic cell separator membrane”, U.S. Patent No.5,418,091(1995)
[40]A. S. Gozdz, J. M. Tarascon and P. C Warren, “Electrolyte activatable lithium-ion rechargeable battery cell”, U.S. Patent No.5,460,904(1995)
[41]J. M. Tarascon, A. S. Gozdz, C. N. Schmutz, F. Shokoohi and P. C. Warren, “Performance of Bellcore’s plastic rechargeable Li-ion batteries”, Solid State Ionics, 86-88, 49-54(1996)
[42]S. Vanhee, R. Rülkens, U. Lehmann, C. Rosenauer, M. Schulze, W. Köhler and G. Wegner, “Synthesis and characterization of rigid rod poly(p-phenylenes)”, Macromolecules, 29, 5136-5142(1996)
[43]U. Lauter, W. H. Meyer and G. Wegner, “Molecular Composites from Rigid-Rod Poly(p-phenylene)s with Oligo(oxyethylene) Side Chains as Novel Polymer Electrolytes”, Macromolecules, 30 , 2092-2101(1997)
[44]C. A. Angell, “Recent developments in fast ion transport in glassy and amorphous materials”, Solid State Ionics, 18-19, 72-88(1985)
[45]D. F. Shriver and P. G. Bruce, “Polymer electrolytes Ⅰ: General principles”, in Solid state electrochem., Eds: P. G. Bruce, Cambridge Univ. Press, New York (1995)
[46]M. A. Ratner, “Aspects of the Theoretical treatment of polymer solid electrolytes: transport theory and models”, in Polymer Electrolyte Reviews-1, Eds: J. R. MacCallum and C. A. Vincent, Elsevier Applied Science, Ch. 7 (1987)
[47]Z. Wang, B. Huang, R. Xue, X. Huang and L. Chen, “Spectroscopic investigation of interactions among components and ion transport mechanism in polyacrylonitrile based electrolytes”, Solid State Ionics, 121, 141-156(1999)
[48]C. R. Yang, J. T. Perng, Y. Y. Wang and C. C. Wan, “Conductive behaviour of lithium ions in polyacrylonitrile”, J. Power Source, 62, 89-93(1996)
[49]J. L. Souquet, M. Duclot and M. Levy, “Salt-polymer complexes: strong or weak electrolytes?”, Solid State Ionics, 85, 149-157(1996)
[50]O. Bohnke, C. Rousselot, P. A. Gillet and C. Truche, “Gel electrolyte for solid-state electrochemical cell”, J. Electrochem. Soc., 139, 1862-1865(1992)
[51]E. Cazzanelli, G. Mariotto, G. B. Appetecchi, F. Croce, and B. Scrosati, “Study of ion-molecule interaction in poly(methylmethacrylate) based gel electrolytes by Raman spectroscopy”, Electrochim. Acta, 40, 2379-2382(1995)
[52]F. Croce, S. D. Brown, S. G. Greenbaum, S. M. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(acrylonitrile)”, Chem. Mater., 5, 1268-1272(1993)
[53]P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly(acrylonitrile)”, Solid State Ionics., 73, 119-126(1994)
[54]P. E. Stallworth, S. G. Greenbaum, F. Croce, S. Slane and M. Salomon, “Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate)”, Electrochim. Acta,40, 2137-2141(1995)
[55]D. Ostrovskii, A. Brodin , L. Torell, G. B. Appetecchi and B. Scrosati, “Molecular and ionic interactions in poly(acrylonitrile)- and poly (methylmetacrylate)- based gel electrolytes”, J. Chem. Phys., 109, 7618- 7624(1998)
[56]M. Watanabe, M. Kanba, K. Nagaoka and I. Shinohara, “Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application”, J. Appl. Polym. Sci., 27, 4194-4198(1982)
[57]M. Watanabe, M. Kanba, K. Nagaoka and I. Shinohara, “Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4”, J. Polym. Sci.: Polym. Phys., 21, 939-948(1983)
[58]K. M. Abraham and M. Alamgir, “Li+-conductive solid polymer electrolytes with liquid-like conductivity”, J. Electrochem. Soc., 137, 1657-1658 (1990)
[59]H. Huang, L. Chen, X. Huang and R. Xue, “Studies on PAN-based lithium salt complex”, Electrochim. Acta, 37, 1671-1673(1992)
[60]B. Scrosati and F. Croce, “The lithium electrode interface: a crucial aspect in polymer batteries”, Mat. Res. Soc. Symp. Proc., 293, 459-467(1993)
[61]F. Croce, S. Panero, S. Passerini, and B. Scrosati, “The role of conductive polymers in advanced electrochemical technology”, Electrochim. Acta, 39, 255-263 (1994)
[62]F. Croce, F. Gerace, G. Dautzemberg, S. Passerini, G. B. Appetecchi and B. Scrosati, “Synthesis and characterization of highly conducting gel electrolytes ”, Electrochim. Acta, 39, 2187-2194(1994)
[63]G. B. Appetecchi, F. Croce, and B. Scrosati, “ Kinetics and stability of the lithium electrolyte in poly(methylmethacrylate)-based gel electrolytes”, Electrochim. Acta, 40, 991-997 (1995)
[64]H. Y Sung, Y. Y. Wang, C. C. Wan, “ Preparation and characterization of poly(vinyl chloride-co vinyl acetate)-based gel electrolytes for Li-ion batteries “, J.Electrochem. Soc., 145, 1207-1211 (1998)
[65]D. W. Kim, “Electrochemical characteristics of a carbon electrode with gel polymer electrolyte for lithium-ion polymer batteries”, J. Power Sources, 76, 175-179(1998)
[66]G. B. Appetecchi, S. Scaccia and S. Passerini, “Investigation on the stability of the lithium-polymer electrolyte interface”, J. Electrochem. Sci., 147, 4448-4452(2000)
[67]B. Huang, Z. Wang, G. Li, H. Huang, R. Xue, L. Chen and F. Wang, “Lithium ion conduction in polymer electrolytes based on PAN”, Solid State Ionics, 85, 79-84(1996)
[68]Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Infrared spectroscopic study of the interaction between lithium salt LiClO4 and the plasticizer ethylene carbonate in the polyacrylonitrile-based electrolyte”, Solid State Ionics, 85, 143-148(1996)
[69]Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Infrared spectroscopic study of the dual plasticizer γ-butyrolactone and sulpholane”, Solid State Ionics, 85, 159-162(1996)
[70]Z. Wang, B. Huang, H. Huang, L. Chen and R. Xue, “Fluorescence spectroscopic study on the interactions among the components of solid electrolyte polyacrylonitrile/dimethylformamide/LiClO4”, Solid State Ionics, 86-88, 313-317(1996)
[71]B. Huang, Z. Wang, L. Chen, R. Xue and F. Wang, “The mechanism of lithium ion transport in polyacrylonitrile based polymer electrolytes”, Solid State Ionics, 91, 279-284(1996)
[72]Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue and L. Chen, “Vibrational spectroscopic studies of interactions between LiClO4 and the plasticizer dimethylformamide”, Solid State Ionics, 92, 265-271(1996)
[73]Z. Wang, B. Huang, H. Huang, L. Chen, R. Xue and F. Wang, “Investigation of the position of Li+ ions in a polyacrylonitrile-based electrolytes by Raman and infrared spectroscopy”, Electrochim. Acta, 41, 1443-1446, (1996)
[74]Z. Wang, B. Huang, Z. Lu, S. Wang, R. Xue, L. Chen and F. Wang, “The vibrational spectroscopic study of polyacrylonitrile-based electrolytes”, Spectrochim. Acta Part A, 52, 691-703(1996)
[75]Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang and L. Chen, “Vibrational spectroscopic study of the interaction between lithium perchlorate and dimethylsulfoxide”, Electrochim. Acta, 42, 2611-2617(1997)
[76]Z. Wang, B. Huang, S. Wang, R. Xue, X. Huang and L. Chen, “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes”, J. Electrochem. Soc., 144, 778-786(1997)
[77]Z. Bashir, “Thermoreversible gels of polyacrylonitrile”, J. Polym. Sci.: Polym. Phys., 30, 1299-1304(1992)
[78]Z. Bashir, “Thermoreversible gelation and plasticization of polyacrylonitrile”, Polymer, 33, 4304-4313(1992)
[79]I. R. Herbert, A. Tipping and Z. Bashir, “NMR and X-ray studies on the morphology of thermoreversible polyacrylonitrile gels”, J. Polym. Sci.: Polym. Phys., 31, 1459-1470(1993)
[80]Z. Bashir, S. P. Church and D. M. Price, “The formation of polymer-solvent complexes of polyacrylonitrile from organic solvents containing carbonyl groups”, Acta. Polym., 44, 211-218(1993)
[81]F. Huang, “Characterization of some poly(acrylonitrile)-based gel electrolytes”, Polym. Plast. Technol. Eng., 36, 777-790(1997)
[82]H. C. Park, J. H. Chun, S. H. Kim, J. M. Ko, S. I. Jo, J. S. Chung and H. J. Sohn, “Polymeric gel electrolytes reinforced with glass-fibre cloth for lithium secondary batteries”, J. Power Sources, 92, 272-276(2000)
[83]F. O. Eschbach and M. Oliver, “Gel electrolyte bonded rechargeable electrochemical cell and method of making same”, U.S. Patent No. 5,681,357 (1997)
[84]M. Oliver, P. J. Gies, S. L. Pendalwar, C. E. Coalson, and F. O. Eschbach, “Method of making a gel electrolyte bonded rechargeable electrochemical cell”, U.S. Patent No. 5,688,293(1997)
[85]D. W. Kim, B. Oh, J. H. Park and Y. K. Sun, “Gel-coated membranes for lithium-ion polymer batteries”, Solid State Ionics, 138, 41-49(2000)
[86]H. J. Rhoo, K. T. Kim, J. K. Park and T. S. Hwang, “Ionic conduction in plasticized PVC/PMMA blend polymer electrolytes”, Electrochim. Acta, 42, 1571-1579 (1997)
[87]H. T. Kim, K. B. Kim, S. W. Kim and J. K. Park, “Li-ion polymer battery based on phase-separated gel polymer electrolyte”, Electrochim. Acta, 45, 4001-4007(2000)
[88]K. Nishimura, M. Ogawa, A. Ishida and N. Eda, “Polymer electrolyte and lithium polymer battery using the same”, U.S. Patent No. 6,165,645(2000)
[89]K. Morigaki, N. Kabuto and K. Haraguchi, “Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator”, U.S. Patent No. 5,597,659(1997)
[90]K. Morigaki, N. Kabuto and K. Haraguchi, “Manufacturing method of a separator for a lithium secondary battery and an organic electrolyte lithium secondary battery using the same separator”, U.S. Patent No. 5,691,005(1997)
[91]J. Brandrup and E. H. Immergut, Polymer handbook, 3rd edit., John Wiley&Sons, Inc. New York, 1989
[92]J. Y. Song, Y. Y. Wang and C. C. Wan, “Conductivity Study of Porous
Plasticized Polymer Electrolytes Based on Poly(vinylidene fluoride)-A Comparison with Polypropylene Separators”, J. Electrochem. Soc., 147, 3219-3225 (2000).
[93]U. S. Park, Y. J. Hong and S. M. Oh, “Fluorescence Spectroscopy for local viscosity measurements in polyacrylonitrile(PAN)-based polymer gel electrolytes”, Electrochim. Acta, 41, 849-855, (1996)
[94]R. A. Raja, B. B. Raju and T. S. Varadarajan, “Application of fluorescence probe technique for determination of glass-transition temperature of polymers: studies in polyacrylonitrile(PAN)”, J. Appl. Poly. Sci., 54, 827-830(1994)
[95]P. G. Bruce, “Electrical Measurement on Polymer Electrolytes” in Polymer electrolyte reviews-1, Eds: J. R. MacCallum and C. A. Vincent, Ch.8, Elsevier Applied Science, London and New York, (1987)
[96]王孟钟和黄应昌,「胶粘剂应用手册」,第五章,化学工应出版社,北京(1987)
[97]S. Panero and B. Scrosati, “Gelification of liquid-polymer systems: a valid approach for the development of various types of polymer electrolyte membranes”, J. Power Sources, 90, 13-19(2000)
[98]L. A. Dominey, “Current state of the art on lithium battery electrolytes”, in Lithium Batteries -New Materials, Developments and Perspectives, Eds: G. Pistoia, Elsevier Industrial Chemistry Library, Volume 5, Ch. 4(1994)
[99]H. S. Choe, B. G. Carroll, D. M. Pasquariello and K. M. Abraham, “ Characterization of some polyacrylonitrile-based electrolytes”, Chem. Mater. 9, 369-379, (1997)
[100]R. B. MacMullin and G. A. Muccini, “Characteristics of porous beds and structures”, A. I. Ch. E. Journal, 2, 393-403(1956)
[101]K. M. Abraham and M. Alamgir, “Ambient temperature rechargeable polymer-electrolytes batteries”, J. Power Sources, 43-44, 195-208(1993)
[102]K. M. Abraham and M. Alamgir, “Room temperature rechargeable polymer electrolytes batteries”, J. Power Sources, 54, 40-45(1995)
[103]S. Slane and M. Salomon, “Composite gel electrolyte for rechargeable for rechargeable lithium batteries”, J. Power Sources, 55, 7-10(1995)
[104]H. S. Kim, B. W. Cho, J. T. Kim, K. S. Yun and H. S. Chun, “Electrochemical properties and performance of poly(acrylonitrile)-based polymer electrolyte for Li/LiCoO2 cells”, J. Power Sources, 62, 21-26(1996)
[105]H. S. Kim, C. H. Park, B. W. Cho, J. T. Kim, K. S. Yun and H. S. Chun, “Discharge characteristics of an Li/LiCoO2 cell with poly(acrylonitrile)-based polymer electrolyte”, J. Power Sources, 68, 361-363(1997)
[106]E. Peled, “The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model”, J. Electrochem. Sci., 126, 2047-2051(1979)
[107]J. G. Thevenin and R. H. Muller, “Impedance of lithium electrodes in a propylene carbonate electrolyte”, J. Electrochem. Sci., 134, 273-280(1987)
[108]R. Xue, H. Huang , M. Menetrier and L. Chen, “Impedance study for interface and whole battery with PAN-polymer electrolyte”, J. Power Sources, 44, 431-438(1993)
[109] D. Aurbach, “Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries”, J. Power Sources, 89, 206-218(2000)
[110]D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. E. Eli, “On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries”, Elcetrochim. Acta, 45, 67-86(1999)
[111]J. Fleig and J. Maier, “The impedance of imperfect electrode contacts on solid electrolytes”, Solid State Ionics, 85, 17-24(1996)
[112]S. Dasgupta and J. K. Jacobs, “Method for forming an electrode-electrolyte assembly”, U.S. Patent No. 5,437,692(1995)
[113]R. A. M. Hikmet, “New lithium-ion polymer battery concept for increased capacity”, Journal of Power Sources, 92, 212-220, 2001
[114]J. R. Macdonald, Impedance Spectroscopy — emphasizing solid materials and systems, John Wiley & Sons, New York, USA (1987).
[115]P. G. Bruce, “Electrical measurements on polymer electrolytes”, in Polymer Electrolyte Reviews ¾1, J. R. MacCallum and C. A. Vincent, Editors, 237-274, Elsevier, London, UK (1987)
[116]刘永辉,「电化学测试技术」,第五章,北京航空学院出版社,北京,1987
[117]宋诗哲,「腐蚀电化学研究方法」,第七章,化学工业出版社,北京,1988
[118]R. D. Armstrong and M. Todd, “Interfacial electrochemistry”, in Solid State Electrochemistry, P. G. Bruce, Editor, p.264-291, Cambridge Univ. Press, Cambridge, UK (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top