跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/12 03:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建宏
研究生(外文):Chien-Hung Chen
論文名稱:白化綠豆液泡膜焦磷酸水解酵素C端的功能分析
論文名稱(外文):Function Determination in C-terminal Region of Vacuolar H(+)-pyrophosphatase from Etiolated Mung Bean Seedlings
指導教授:潘榮隆潘榮隆引用關係
指導教授(外文):Rong-Long Pan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:55
中文關鍵詞:液泡焦磷酸水解酵素C端質子傳送綠豆植株蛋白質C端水解酵素焦磷酸鹽
外文關鍵詞:VacuoleH+-pyrophosphataseC-terminal RegionH(+)-translocationmung bean seedlingscarboxypeptidase YPPi
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
植物液泡是一種多功能的胞器,在成熟的高等植物中,其含量約佔細胞總體積的80~90%以上。當外在環境改變時,為維持細胞質內部生理的恆定,由液泡所形成的內在環境會有某些程度的調整;一般而言,液泡的主要功能在於維持細胞的膨壓、酸鹼平衡以及代謝物的儲存等。
植物液泡囊膜上包含兩種傳送質子的幫浦:液泡質子腺核三磷酸水解酵素(V-ATPase)與液泡無機焦磷酸水解酵素(V-PPase)。液泡質子腺核三磷酸水解酵素廣泛存在於真核細胞中,而液泡無機焦磷酸水解酵素則只能在植物及一些細菌中找到,其主要功能是利用水解PPi所產生的能量將質子從液泡膜外傳送至膜內,形成pH梯度與膜電位差,藉由這些力量可以驅動離子及代謝物進出液泡囊膜。
在本實驗中,我們萃取白化綠豆下胚軸中的液泡,先分別利用兩種detergent (sodium deoxycholate, lysophosphatidylcholine)將V-PPase從液泡膜上溶離出來,再藉由gel filtration與ion exchange 層析法作進一步純化。以其純化所得的液泡無機焦磷酸水解酵素為材料,用carboxypeptidase Y (CPY)處理,導致酵素C端的末端缺失,來探討C端在整個酵素功能與結構之間所扮演的角色。
由實驗結果得知,相較於未純化的液泡囊膜無機焦磷酸水解酵素,經過CPY處理之後,純化的蛋白質活性受到明顯的抑制(65%)。純化的酵素之所以會對CPY那麼的敏感,主要歸因於缺乏液泡囊膜的保護。同時,質子傳送能力也受到嚴重的破壞(50%),而呈現decoupling的現象。
另外,經CPY處理之純化的液泡囊膜無機焦磷酸水解酵素,並不再受到鉀離子的激活,因此,我們進而推測無機焦磷酸水解酵素的C端可能含有鉀離子的結合或調控位置。而且,無機焦磷酸水解酵素的生理受質,焦磷酸鹽,對於C端的缺失反應具有保護作用。
綜合以上的結果,我們可以發現無機焦磷酸水解酵素的C端可能與陽離子的結合或調控有關,同時,扮演著維持酵素質子通道結構完整的角色。位於活性中心的受質結合部位,與酵素C端產生某種交互作用,而形成堅韌的構形以避免CPY的攻擊。

Vacuoles are multifunctional organelles in the mature plant cells and occupy 80~90% of total cell volume. They are important in the homeostasis of the plant cells, which involves the regulation of cell turgor, cytoplasmic pH, and storage of metabolites.
Plant vacuolar vesicles contain two parallel proton pumps, namely vacuolar H(+)-pumping adenosine-triphosphatase (V-ATPase; EC 3.6.1.3), which is widely distributed in most eukaryotes, and vacuolar H(+)-pumping inorganic pyrophosphatase (V-PPase; EC 3.6.1.1), which exists primarily in higher plants and several bacteria. V-PPase catalyzes PPi hydrolysis and the electrogenic H(+)-translocation from the cytosol to the vacuolar lumen to generate an inside-acidic pH gradient (pH) and an interior-positive membrane potential () for the transport of ions and secondary metabolites.
Vacuolar H(+)-PPase was purified from etiolated hypocotyls of mung bean seedlings (Vigna radiata L.) by solubilization with sodium deoxycholate and lysophosphatidylcholine, gel filtration as well as ion exchange chromatography.
In this study, the treatment of carboxypeptidase Y (CPY) markedly suppressed H+ translocation and purified vacuolar H(+)-PPase activity instead of membrane-bound enzymatic activity in a concentration-dependent manner. It was indicated that the purified vacuolar H(+)-PPase is more sensitive to CPY owing to the removal of the membrane. In addition, CPY obviously decoupled the association of proton translocation and enzymatic activity, suggesting that the C-terminus of the enzyme either participates directly in proton translocation or plays a role in the maintenance of the structure in the proton channel.
Furthermore, the incubation with CPY relieved the stimulation of KCl, implying that the C-terminus is most likely the candidate for the region involved in the K(+)-binding and/or probably the K(+)-regulation of the enzyme. On the other hand, the protection studies revealed that PPi is crucial for most protection of vacuolar H(+)-PPase against C-terminal digestion by CPY.
As a result, we speculate that the C-terminus of vacuolar H(+)-PPase is not directly involved in the catalytic activity, but provides the site for the cation-binding and regulation as well as supports the structure of a proton channel. Moreover, PPi binding site in catalytic domain may exert long-distance interaction with C-terminus of vacuolar H(+)-PPase, resulting in a tougher conformation against proteolytic attack by CPY.

Page
1. Abbreviations 1
2. Abstract 3
3. Introduction 8
4. Materials and Methods
4-1. Plant materials 17
4-2. Tonoplast preparation 17
4-3. Purification of vacuolar H+-pyrophosphatase 19
4-4. Protein determination and enzyme activity assay 20
4-5. PPi-dependent proton pumping assay 21
4-6. Sodium dodecyl sulfate-polyacrylamide gel
electrophoresis 22
4-7. Immunoblot assay 23
4-8. Cleavage of vacuolar H+-PPase by carboxypeptidase Y 24
4-9. Chemicals 25
5. Results
5-1. Purification of the vacuolar H+-PPase 26
5-2. Immunoblotting with the anti-pyrophosphatase antibody 26
5-3. Inhibition of PPi hydrolysis by carboxypeptidase
Y 27
5-4. Inactivation of proton translocation by
carboxypeptidase Y 28
5-5. Effects of K+ on vacuolar H+-PPase altered by
carboxypeptidase Y 28
5-6. Protection effect against carboxypeptidase Y 29
6. Discussion 31
7. References 35
8. Figures and Tables 44

1. Baykov, A. A., Bakaleva, N. P., and Rea, P. A. (1993) Steady- state kinetics of substrate hydrolysis by vacuolar H+-
pyrophosphatase. A simple three state model. Eur. J.
Biochem. 217, 755-762.
2. Baykov, A. A., Hyytia, T., Volk, S. E., Kasho, V. N., Vener,
A. V., Goldman, A., Lahti, R., and Cooperman, B. S. (1996)
Catalysis by Escherichia coli inorganic pyrophosphatase: pH
and Mg2+ dependence. Biochemistry. 35 (15), 4655-61.
3. Bradford, M. (1976) A rapid and sensitive method for the
quantities of microgram quantities of protein utilizing the
principle of protein dye binding. Anal. Biochem. 72, 248-254.
4. Braley, R., and Piper, P. W. (1997) The C-terminus of yeast
plasma membrane H+-ATPase is essential for the regulation of
this enzyme by heat shock protein Hsp30, but not for stress
activation. FEBS Lett. 418, 123-126.
5. Britten, C. J., Turner, J. C., and Rea, P. A. (1989)
Identification and purification of substrate binding subunit
of higher plant H+-translocation inorganic pyrophosphatase.
FEBS Lett. 256, 200-206.
6. Chanson, A., and Pilet, P. (1989) Target molecular size and
sodium dodecylsulfate-polyacrylamide gel electrophoresis
analysis of the ATP- and pyrophosphate-dependent proton
pumps from maize root tonoplast. Plant Physiol. 90, 934-938.
7. Chrispeels, M. J., Crawford, N. M., and Schroeder, J. I.
(1999) Proteins for transport of water and mineral nutrients
across the membranes of plant cells. Plant Cell. 11, 661-675.
8. Cooperman, B. S., Baykov, A. A., and Lahti, R. (1992)
Evolutionary conservation of the active site of soluble
inorganic pyrophosphatase. Trends Biochem. Sci. 17, 262-266.
9. Darley, C. P., Skiera, L. A., Northrop, F. D., Sanders, D.,
and Davies, J. M. (1998) Tonoplast inorganic pyrophosphatase
in Vicia faba guard cells. Planta. 206, 272-277.
10. Fiske, C. H., and Subbarow, Y. (1925) The colorimetric
determination of phosphorous. J. Biochem. 66, 378-400.
11. Gordon-Weeks, R., Steele, S. H., and Leigh, R. A. (1996)
The role of magnesium, pyrophosphate, and their complexes as
substrate and activators of the vacuolar H+-pumping
inorganic pyrophosphatase. Plant Physiol. 111, 195-202.
12. Heikinheimo, P., Pohjanjoki, P., Helminen, A., Tasanen, M.,
Cooperman, B. S., Goldman, A., Baykov, A., and Lahti, R.
(1996) A site-directed mutagenesis study of Saccharomyces
cerevisiae pyrophosphatase. Functional conservation of the
active site of soluble inorganic pyrophosphatases. Eur. J.
Biochem. 239, 138-143.
13. Hung, S. H., Chiu, S. J., Lm, L. Y., and Pan, R. L. (1995)
Vacuolar H+-pyrophosphatase cDNA (Accession No. U31467) from
etiolated mung bean seedlings. Plant Physiol. 109, 1125-1127.
14. Johannes, E., and Felle, H. (1989) The role of Mg2+ in
proton transport by the tonoplast pyrophosphatase in Riccia
fluitans vacuoles. Plant Physiol. 77, 326-331.
15. Kim, Y., Kim, E. J., and Rea, P. A. (1994) Isolation and
characterization of cDNAs encoding the vacuolar H+-
pyrophosphatase of Beta vulgaris. Plant Physiol. 106, 375-
382.
16. Kim, E. J., Zhen, R. G., and Rea, P. A. (1995) Site-
directed mutagenesis of vacuolar H+-pyrophosphatase.
Necessity of Cys634 for inhibition by maleimides but not
catalysis. J Biol Chem. 270 (6), 2630-2635.
17. Laemmli, U. K. (1970) Cleavage of structural proteins
during the assembly of the head of bacteriophage T4. Nature.
227, 680-685.
18. Lahti, R., Pitkäiranta, T., Valve, E., Ilta, I., Kukko-
Kalske, E., and Heinonen, J. (1988) Cloning and
characterization of the gene encoding inorganic
pyrophosphatase of E. coli. k-12. J. Bacteriol. 170, 5901-
5907.
19. Leigh, R. A., Pope, A. J., Jennings, I. R. and Sanders, D.
(1992) Kinetics of the vacuole proton pyrophosphatase. 100,
1698-1705.
20. Leigh, R. A. (1997) Solute composition of vacuoles. In
Advances in Botanical Research, Vol. 25: The Plant Vacuole,
R. A. Leigh and D. Sanders, eds (London: Academic Press),
pp. 171-194.
21. Leng, X. H., Manolson, M. F., and Forgac, M. (1998)
Function of the COOH-terminal domain of Vph1p in activity
and assembly of the yeast V-ATPase. J. Biol. Chem. 273, 6717-
6723.
22. Maeshima, M., and Yoshida, S. (1989) Purification and
properties of vacuolar membrane proton-translocating
inorganic pyrophosphatase from mung bean. J. Biol. Chem.
264, 20068-20073.
23. Maeshima, M. (1990) Oligomeric structure of H+-
translocating inorganic pyrophosphatase of plant vacuoles.
Biochem. Biophy. Res. Commun. 168, 1157-1162.
24. Maeshima, M. (1991) H+-translocating inorganic
pyrophosphatase of plant vacuoles. Inhibition by Ca2+,
stabilization by Mg2+ and immunological comparison with
other inorganic pyrophosphatases. Eur. J. Biochem. 196 (1),
11-7.
25. Maeshima, M. (2000) Vacuolar H+-pyrophosphatase. Biochim
Biophys Acta. 1465 (1-2), 37-51.
26. Marty, F. (1999) Plant vacuoles. Plant Cell. 11, 587-599.
25. Maurel, C. (1997) Aquaporins and water permeability of
plant membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol.
48, 399-429.
27. Palmgren, M. G., Larsson, C., and Sommarin, M. (1990)
Proteolytic activation of the plant plasma membrane H+-
ATPase by removal of a terminal segment. J. Biol. Chem. 265,
13423-13426.
28. Rea, P. A., Kim, Y., Sarafian, V., Poole, R. J., Davies, J.
M., and Sanders, D. (1992) Vacuolar H+-translocating
pyrophosphatase: a new category of ion translocase. Trends
Biochem. Sci. 17, 348-353.
29. Rea, P. A. and Poole, R. J. (1993) Vacuolar H+-
translocating pyrophosphatase. Annu. Rev. Plant Physiol.
Plant Mol. Biol. 44, 157-180.
30. Regenberg, B., Villalba, J. M., Lanfermeijer, F. C., and
Palmgren, M. G. (1995) C-terminal deletion analysis of plant
plasma membrane H+-ATPase: yeast as a model system for
solute transport across the plant plasma membrane. Plant
Cell. 7, 1655-1666.
31. Sakakibara, Y., Kobayashi, H., and Kasamo, K. (1996)
Isolation and characterization of cDNAs encoding vacuolar H+-
pyrophosphatase isoforms from rice (Oryza sativa L.). Plant
Mol. Biol. 31, 1029-1038.
32. Sarafian, V., and Poole, R. J. (1989) Purification of an H+-
translocating inorganic pyrophosphatases from vacuole
membranes of red beet. Plant Physiol. 91, 34-38.
33. Sarafian, V., Kim, Y., Poole, R. J., and Rea, P. A. (1992)
Molecular cloning and sequence of cDNA encoding the
pyrophosphate-energized vacuolar membrane proton pump of
Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 89, 1775-
1779.
34. Sato, M. H., Maeshima, M., Ohsumi, Y., and Yoshida, M.
(1991) Dimeric structure of H+-translocating pyrophosphatase
from pumpkin vacuolar membranes. FEBS Lett. 290, 177-180.
35. Takasu, A., Nakanishi, Yamauchi, T., and Maeshima, M.
(1997) Analysis of the substrate binding site and carboxyl
terminal region of vacuolar H+-pyrophosphatase of mung bean
with peptide antibodies. J. Biochem. 122, 883-889.
36. Tanaka, Y., Chiba, K., Maeda, M., and Maeshima, M. (1993)
Molecular cloning of cDNA for vacuolar membrane proton-
translocating inorganic pyrophosphatase in Hordeum vulgare.
Biochem. Biophys. Res. Commun. 190 (3), 1110-1114.
37. Tzeng, C. M., Yang, C. Y., Yang, S. J., Jiang, S. S., Kuo,
S. Y., Hung, S. H., Ma, J. T., and Pan, R. L. (1996) Subunit
structure of vacuolar proton-pyrophosphatase as determined
by radiation inactivation. Biochem. J. 316, 143-147.
38. Wang, M. Y., Lin, Y. H., Chow, W. M., Chung, T. P., and
Pan, R. L. (1989) Purification and characterization of
tonoplast ATPase from etiolated mung bean seedlings. Plant
Physiol. 90, 475-481.
39. Wink, M. (1993) The plant vacuole:a multifunctional
compartment. J. Exp. Bot. 44, 231-246.
40. Wink, M. (1997) Compartmentation of secondary metabolites
and xenobiotics in plant vacuoles. In Advances in Botanical
Research, Vol. 25: The Plant Vacuole, R. A. Leigh and D.
Sanders, eds (London: Academic Press), pp. 141-169.
41. Yang, S. J., Jiang, S. S., Tzeng, C. M., Kuo, S. Y., Hung,
S. H., and Pan, R. L. (1996) Involvement of tyrosine residue
in the inhibition of plant vacuolar H+-pyrophosphatase by
tetranitromethane. Biochim. Biophys. Acta. 1294, 89-97.
42. Yang, S. J., Jiang, S. S., Van, R. C., Hsiao, Y. Y., and
Pan, R. L. (2000) A lysine residue involved in the
inhibition of vacuolar H+-pyrophosphatase by fluorescein 5'-
isothiocyanate. Biochim Biophys Acta. 1460 (2-3), 375-83.
43. Zhen, R. G., Kim, E. J., and Rea, P. A. (1997) Acidic
residues necessary for pyrophosphate-energized pumping and
inhibition of the vacuolar H+-pyrophosphatase by N,N’-
dicyclohexylcarbodiimide. J. Biol.Chem. 272, 22340-22348.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top