跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃雅凰
研究生(外文):Ya-Huang Huang
論文名稱:下電極材料對Ta2O5化學氣相沉積薄膜特性影響之研究
論文名稱(外文):Study on the Influence of Various Bottom Electrode Materials to the characteristics of Ta2O5 Thin Film Deposited by Chemical Vapor Deposition
指導教授:吳泰伯
指導教授(外文):Tai-Bor Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:93
中文關鍵詞:有機化學氣相沉積法電漿熱處理粗糙複晶矽半球型晶粒矽氮氣氛快速退火熱處氧氣氛快速退火熱處理
外文關鍵詞:MOCVDPlasma AnnealingRugged-Poly-SiHSGRTNRTO
相關次數:
  • 被引用被引用:2
  • 點閱點閱:338
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以有機化學氣相沉積法(MOCVD)鍍製Ta2O5介電薄膜於TaN/Ta、Ru、Pt/TiN/Ti/SiO2、PtO/Pt/TiN/Ti/SiO2四種基板,探討不同電漿熱處理溫度對其結晶結構、微觀結構、電容介電特性等方面的研究。在研究Ta2O5/TaN/Ta結構時,利用N2O,10W,450℃電漿退火15min來去除Ta2O5薄膜中的碳、氫等雜質,可使漏電流特性有所改善,在1V的工作電壓可以使c-Ta2O5(25nm)/TaN/Ta的漏電流降至6.5×10-8A/cm2,但卻使得TaN電極被氧化成TaON使得介電常數大幅下降。
利用Ru底電極可以得到結晶的Ta2O5有(001)的優選結晶方向而提高其介電常數值達62。利用PtO電極具有粗糙表面的半球型突起結構,有效的增加其表面積而提高電容值,相當於介電常數有35∼40之間,其表面積增為原來的1.56倍。Pt也會因表面些微的小突起而增加面積約1.12倍。不管是以Ru、Pt、PtO為底電極,N2O電漿熱處理的溫度越高,均會造成底電極本身的粗糙度增加,而使得漏電流因尖端放電而過大,因此,必須在較低的溫度做去除薄膜中碳氫的工作。而Ru底電極在450℃電漿熱處理會形成RuO2而使得表面更粗糙。所以當熱處理溫度在300℃,10W,15min時,W/c-Ta2O5(30nm)/Ru,在0.5MV/cm,漏電流約8.9×10-8A/cm,介電常數為56。若以非結晶Ta2O5來比較在不同電極上的漏電流特性,W/a-Ta2O5(35nm)/Ru,在0.5MV/cm,漏電流約6.3×10-10A/cm,介電常數為27.7;W/a-Ta2O5(42nm)/Pt在0.5MV/cm時,J=5.3×10-9 MV/cm,介電常數為27.8;W/a-Ta2O5(42nm)/PtO則漏電流較大,在0.5MV/cm時,J=6.7×10-6 MV/cm,介電常數為35。
目 錄
摘要
誌謝
表目錄---------------------------------------------------------------iv
圖目錄---------------------------------------------------------------v
第一章緒論---------------------------------------------------------1
[1]1-1 研究背景-----------------------------------------------------------------1
1-2 研究動機-----------------------------------------------------------------2
1-3 研究目標-----------------------------------------------------------------4
第二章文獻回顧---------------------------------------------------8
2-1 Ta2O5薄膜-----------------------------------------------------------------8
2-2 Ta2O5結構-----------------------------------------------------------------8
2-3 Ta2O5薄膜製作方法-----------------------------------------------------9
2-4 化學氣相沉積法---------------------------------------------------------10
2-4.1簡介--------------------------------------------------------------------10
2-4.2CVD原理-------------------------------------------------------------10
2-5 Ta2O5薄膜特性之改善--------------------------------------------------13
2-5.1提高電容值-----------------------------------------------------------13
2-5.2漏電流的降低--------------------------------------------------------15
2-6下電極的選擇-------------------------------------------------------------17
2-6.1TaN電極--------------------------------------------------------------18
2-6.2Ru電極----------------------------------------------------------------19
2-6.3Pt 電極----------------------------------------------------------------20
2-6.4白金氧化物(PtOx)電極----------------------------------------------21
第三章實驗步驟---------------------------------------------------26
3-1 薄膜電容的製作---------------------------------------------------------26
3-1.1 底電極製作-----------------------------------------------------------26
3-1.2介電薄膜沈積--------------------------------------------------------27
3-1.3Ta2O5介電薄膜熱處理---------------------------------------------28
3-1.4上電極製作-----------------------------------------------------------29
3-3 薄膜的量測與分析------------------------------------------------------29
3-3.1晶體結構分析--------------------------------------------------------29
3-3.2膜厚量測--------------------------------------------------------------29
3-3.3微觀結構--------------------------------------------------------------30
3-3.4縱深分析--------------------------------------------------------------30
3-3.5介電常數與散逸因子量測-----------------------------------------30
3-3.6電流-電壓量測-------------------------------------------------------30
第四章結果與討論------------------------------------------------37
4-1 TaN/Ta底電極對W/Ta2O5/TaN/Ta電容結構之性質探討-----------------------------------------------------------------------37
4-1.1晶體結構分析--------------------------------------------------------37
4-1.2微觀結構分析--------------------------------------------------------38
4-1.3縱深分析--------------------------------------------------------------38
4-1.4介電常數與散逸因子-----------------------------------------------39
4-1.5漏電流探討-----------------------------------------------------------42
4-2 以Ru、Pt、PtO為底電極之Ta2O5電容特性之探討 -----------44
4-2.1晶體結構分析--------------------------------------------------------44
4-2.2縱深分析--------------------------------------------------------------45
4-2.3介電常數分析--------------------------------------------------------46
4-2.4微觀結構分析--------------------------------------------------------48
4-2.5比較Ta2O5在Ru、Pt、PtO三種電極之漏電流特性----------50
第五章結論---------------------------------------------------------81
參考文獻-------------------------------------------------------------83
表 目 錄
表1-11999年的全球十大DRAM廠商------------------------------------6
表1-2前十大 DRAM需求的系統種類------------------------------------7
表1-3每部系統所需DRAM平均用量-------------------------------------7
表1-4幾種典型之高介電薄膜材料----------------------------------------7
表3-1底電極TaN/Ta之鍍膜條件-------------------------------------------33
表3-2底電極Ru之鍍膜條件------------------------------------------------33
表3-3底電極PtO/Pt之鍍膜條件--------------------------------------------34
表3-4底電極Pt之鍍膜條件-------------------------------------------------34
表3-5鉭先趨物之基本特性-------------------------------------------------35
表3-6(Ta2O5)薄膜之製程參數( Bubbling 系統) ------------------------35
表3-7上電極 W 鍍膜條件-------------------------------------------------36
表4-1c-Ta2O5(25nm)/TaN/Ta,經過RTO以後生成的TaON的厚度,RTO溫度與測得的串聯電容值C,串聯的介電常數以兩層厚度和計算之k值-------------------------------------------------53
表4-2c-Ta2O5(25nm)/TaN/Ta之電漿熱處理溫度與TaON生成的厚度計算,以及考慮TaON層在內的介電常數---------------------53
表4-3a-Ta2O5(28nm)/TaN/Ta之電漿熱處理溫度與TaON生成的厚度計算,以及考慮TaON層在內的介電常數--------------------54
圖 目 錄
圖1-1DRAM產品世代交替趨勢-------------------------------------------3
圖1-2DRAM記憶胞的(a)截面構造與(b)電路---------------------------3
圖1-3DRAM電容結構的發展演進----------------------------------------4
圖2-1Ta-O的相圖------------------------------------------------------------23
圖2-2Ta2O5斜方晶結構在(001)面的投影示意圖------------------------23
圖2-3Ta2O5六方晶的結構示意圖------------------------------------------24
圖2-4化學氣相沉積的五個主要機構--------------------------------------24
圖2-5成長半球型晶粒矽之示意圖----------------------------------------25
圖2-6不同氧流量比例與基板溫度與PtOx相形成的關係-------------25
圖3-1流程圖-------------------------------------------------------------------31
圖3-2(Ta2O5)薄膜之LPCVD製程設備圖---------------------------------32
圖4-1Ta2O5結晶化熱處理前後,與Ta2O5結晶之後在不同溫度下10W,15min N2O電漿補氧熱處理之XRD圖-------------------55
圖4-2Ta2O5結晶化熱處理前後,與Ta2O5結晶之後在不同溫度下氧氣氛快速退火(RTO)補氧熱處理之XRD圖-----------------------55
圖4-3Ta2O5/TaN/Ta經750℃RTN熱處理之後,表面微觀結構的SEM照片(A) ×50K (B)×100K-------------------------------------56
圖4-4 TaN/Ta電極之AFM (A) Roughness (B) 3D表面型態圖分析--56
圖4-5Ta2O5/TaN/Ta經750℃-RTN之AFM (A) Roughness (B) 3D表面型態分析----------------------------------------------------------57
圖4-6Ta2O5(25nm)/TaN/Ta經過750℃,30sec的氮氣氛快速退火熱 處理(RTN)的歐傑電子縱深分析-----------------------------------58
圖4-7為Ta2O5(25nm)/TaN/Ta/Si,經過結晶化RTN 750℃以後再以N2O氣氛於450℃,10W,15min電漿退火熱處理的歐傑電子縱深分析-------------------------------------------------------------58
圖4-8Ta2O5(25nm)/TaN/Ta經過750℃-30sec-RTN後,再以氧氣氛快速退火熱處理2分鐘(RTO),之介電常數與散逸因子和RTO溫度的關係-------------------------------------------------------------59
圖4-9結晶的Ta2O5(25nm)/TaN/Ta在不同N2O電漿熱處理溫度下對量測到的介電常數以及散逸因子的影響--------------------59
圖4-10 結晶的Ta2O5在400℃,N2O 電漿熱處理後量測並計算其氧化厚(dTaON)對時間(t)之ln(dTaON)-ln(t)關係圖-------------------60
圖4-11非結晶的Ta2O5在400℃,N2O 電漿熱處理後量測並計算其氧化厚(dTaON)對時間(t)之ln(dTaON)-ln(t)關係圖形-------------60
圖4-12Ta2O5(15nm)/TaN/Ta在不同瓦數下350℃-N2O電漿熱處理15分鐘後之介電常數與散逸因子的影響-----------------------------61
圖4-13Ta2O5(15nm)/TaN/Ta在350℃-10W-O2電漿熱處理不同時間後之介電常數與散逸因子的影響-----------------------------------61
圖4-14比較350℃-O2氣氛快速熱處理(RTO) 2分鐘與350℃- N2O-15min電漿熱處理的漏電流特性(A)均以固定厚度25nm計算電場(B)考慮TaON的厚度換算電場--------------------------------62
圖4-15結晶的Ta2O5/TaN/Ta在300℃∼450℃,N2O電漿熱處理15min之漏電流特性( J-V) -------------------------------------------------------63
圖4-16非結晶的Ta2O5/TaN/Ta在300℃∼450℃,N2O電漿熱理15min之漏電流特性(J-V) --------------------------------------------------------63
圖4-17結晶的Ta2O5+TaON/TaN/Ta之在300℃∼450℃,N2O電漿熱處理15min漏電流密度與電場的關係(J-E)--------------------------64
圖4-18結晶的Ta2O5+TaON/TaN/Ta在300℃∼450℃,N2O電漿熱處理15min之漏電流密度與電場的關係(J-E)-------------------64
圖4-19正、負偏壓各以TaON、Ta2O5本身各自承受的電場之W/c-Ta2O5/TaN/Ta電容結構在300℃∼450℃,N2O電漿熱處理15min漏電流密度與電場的關係(J-E)----------------------65
圖4-20(a)-(c)以Ru為底電極之結晶的Ta2O5在300℃∼450℃-N2O電漿熱處理15min後的晶體結構分析(XRD) (d) Ta2O5在Ru與RuO2/Ru之結晶特性分析(XRD) --------------------------------65
圖4-21以 Pt/TiN/Ti/SiO2為底電極之結晶的Ta2O5在300℃∼450℃-N2O電漿熱處理15min後的晶體結構分析(XRD)--------------67
圖4-22以 PtO/Pt/TiN/Ti/SiO2為底電極之結晶的Ta2O5在300℃∼450℃-N2O電漿熱處理15min後的晶體結構分析(XRD)------ 67
圖4-23Ta2O5/Pt/TiN/Ti/SiO2 經過750℃ RTN 30 sec 之後做歐傑電子縱深分析------------------------------------------------------------- 68
圖4-24Ta2O5/PtO/Pt/TiN/Ti/SiO2 經過750℃ RTN 30 sec 之後做歐傑電子縱深分析------------------------------------------------------- 68
圖4-25非結晶Ta2O5/Ru經過450℃電漿熱處理之歐傑電子縱深分析69
圖4-26(a) 結晶 (b)非結晶 Ta2O5/Ru介電常數與散逸因子隨電漿熱處理溫度的關係---------------------------------------------------- 70
圖4-27(a) 結晶 (b)非結晶 Ta2O5/PtO/Pt/TiN/Ti/SiO2介電常數與散逸因子隨電漿熱處理溫度的關係----------------------------------- 71
圖4-28非結晶的Ta2O5/Pt介電常數與散逸因子隨電漿熱處理溫度的 關係---------------------------------------------------------------------- 72
圖4-29(a) 非結晶Ta2O5在PtO電極上的介電常數與散逸因子隨頻率變化的關係----------------------------------------------------------------- 72
圖4-29(b) 結晶的Ta2O5在PtO電極上的介電常數與散逸因子隨頻率變化的關係---------------------------------------------------------- 73
圖4-30 比較非結晶的Ta2O5在TaN、Ru、Pt、PtO四種電極介電 常數與散逸因子的變化---------------------------------------------- 73
圖4-31 非結晶Ta2O5/Ru之SEM (a) 截面(×100k) (b) 表面(×100k)---74
圖4-32非結晶Ta2O5/Pt/TiN/Ti/SiO2之SEM (a) 截面 (×150k) (b) 表面(×100k) -------------------------------------------------------------- 74
圖4-33非結晶Ta2O5/PtO/Pt/TiN/Ti/SiO2之SEM (a) 截面 (×150k) (b) 表面(×100k) ------------------------------------------------------ 74
圖4-34非結晶的Ta2O5/PtO/Pt/TiN/Ti/SiO2之AFM表面型態---------75
圖4-35非結晶的Ta2O5/Pt/TiN/Ti/SiO之AFM表面型態---------------75
圖4-36非結晶的Ta2O5/Ru之AFM表面型態-----------------------------76
圖4-37PtO/Pt/TiN/Ti/SiO2之AFM表面型態-----------------------------76
圖4-38Pt/TiN/Ti/SiO2之AFM表面型態----------------------------------76
圖4-39結晶的Ta2O5/PtO/Pt/TiN/Ti/SiO2之AFM表面型態------------77
圖4-40結晶的Ta2O5/Pt/TiN/Ti/SiO之AFM表面型態------------------77
圖4-41結晶的Ta2O5/Ru之AFM表面型態------------------------------78
圖4-42(a)非結晶 (b)結晶的Ta2O5/Ru在300℃∼450℃ N2O電漿熱處理 10W-15min,之漏電流特性(J-E) -------------------------79
圖4-43非結晶的Ta2O5/Pt在300℃∼450℃N2O電漿熱處理之漏電流特性( J-E) --------------------------------------------------------------80
圖4-44非結晶的Ta2O5/PtO在300℃∼450℃N2O電漿熱處理之漏電流特性(J-E)----------------------------------------------------------------- 80
參考文獻
1.零組件雜誌,西元2000年12月,vol. 110,p20。
2.『迎向二十一世紀的半導體產業』,半導體趨勢圖示,朱家棟等人編著,2000年11月出版。
3.張義昭,“電子資訊”(1998)4。
4.新電子科技雜誌,"DRAM世紀末回顧與前瞻" 165,(1999)219。
5.『DRAM 、Flash Memory 產業的投資與製造 』電子月刊第六卷第四期,2000年4月,p. 162,作者大石基之、望月洋介,劉台徽譯。
6.『大型DRAM混載LSI製程技術』,電子期刊第七卷第二期,2001年,二月, p182。
7.『十億位元時代的DRAM單元技術』,電子期刊第七卷第二期,2001年,二月, p187。
8.工業材料雜誌,2001年四月,172期,p 91。
9.張志祥, 吳泰伯, “ G bit DRAM應用之強介電薄膜技術與發展 ”,材料會訊, 4(3), (1997) 11
10.D. E. Kotecki, “ High-k Dielectric Materials for DRAM Capacitors ”, Semiconductor International, (1999) 109
11.曾鴻輝, “ 動態隨機存取記憶體之電容器的製造方法 ”,電子資訊, 4(1), (1998) 14
12.林俊賢, 陳仕卿, “皺摺多晶矽層在堆疊形動態隨機存取記憶體
電容之形成與運用 ”, 電子月刊, 5(5), (1999) 130
13. R. Ramesh, “ Thin Film Ferroelectric Materials and Devices ”, Kluwer Academic Publisher, (1997)。
14.A. Nitayama, Y. Kohyama and K. Hieda, “ Future Directions for DRAM Memory Cell Technology ”, IEDM 98, (1998)
15.H. Miki, M. Kunitomo, R. Furukawa, T. Tamaru, H. Goto, S. Iijima,Y. Ohji, H. Yamamoto, J. Kuroda, T. Kisu and I. Asano, “ Leakage Current Mechanism of a Tantalum Pentoxide Capacitor on Rugged Si with a CVD-TiN Plat Electrode for High Density DRAMs ”, Symp. On VLSI Tech. Dig. of Tech. Papers, (1999) 99
16.K. N. Kim, H. S. Jeong, G. T. Jeong, C. H. Cho, W. S. Yang, J. H. Sim, K. H. Lee, G. H. Koh, D. W. Ha, J. S. Bae, J. G. Lee and B. J. Park, “ A 0.15 um DRAM Technology Node for 4 Gb DRAM ”, Symp. On VLSI Tech. Dig. of Tech. Papers, (1998) 16
17.吳啟明, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鈦酸緦鋇薄膜的研究 ”, 清華大學, 博士論文, (1997)
18.施修正, “利用濺鍍法以鎳酸鑭為電極製作動態記憶體之鋯鈦酸鋇薄膜的研究 ”, 清華大學, 博士論文, (1997)
19.Kiyotoshi, S. Yamazaki, K. Eguchi, K. Hieda, Y. Fukzumi and M. Izuha, “ In-Situ Multi-Step (IMS) CVD Process of (Ba,Sr)TiO3 Using Hot Wall Batch Type Reactor for DRAM Capacitor Dielectrics ”, Symp. On VLSI Tech. Dig. of Tech. Papers, (1999) 101
20.K. Ono, T. Horikawa, T. Shibano, N. Mikami, T. Kuroiwa and T. Kawahara, “ (Ba,Sr)TiO3 Capacitor Technology for Gbit-Scale DRAMs ”, IEDM 98. (1998) 803 .
21.B. T. Lee, C. Y. Yoo, H. J. Lim, C. S. Kang, H. B. Park and W. D. Kim, “ Integration Process of (Ba,Sr)TiO3 Capacitor for 1 Gb and Beyond ”, IEDM 98, (1998) p 815。
22.陳三元、藍邦強,「SrBi2Ta2O9薄膜在記憶元件上之研究與應用」,電子期刊第六卷第十期,2000年10月號,p152。
23.吳世全, “ 高介電材料之記憶元件在’98IEDM ”, 電子月刊, 5(5), (1999) p.112 .
24.K. A. Mckinley and N. P. Sander ,Thin Solid Films,290-291, (1996) p.440 .
25. Kee-Won Kwon,Chang-Seok Kang,Soon Oh Park etc.,IEEE transactions on Electron Devices,v.43,n.6,(1996) p.919 .
26.Qiang Lu,Donggun Park,Alexander Kalnitsky etc., IEEE Electron Device Letters,v.19,n.9, (1998) p.341 .
27.Yasuhiko Nakagawa,Yasuo Gomi,and Takashi Okada,American Institute of Physics,J. Appl. Phys. v.61,n.11,(1987)p5012 .
28.F. Rubio,J. M. Albella,and J. M. Martinz-Duart,Thin Solid Film 90,405(1982).
29.T. B. Massalski,Binary Alloy Phase Diagrams,p2921.
30.N. C. Sterphenson and R. S. Roth,Acta Crystallographica. Sec. B. v.27, (1971), P1037-1044.
31.Atsuo Fuknmoto and Kazutpsho Nowa,Physical Review. B. Solid State,v.55, n.17, May (1997) p11155-11160.
32.S. Duenas,H. Castan,J. Barbolla,R. R Kola,P.A Sullivan,Microelectronics Reliability,40(2000) p.659-662 .
33.S. Duenas,E. Castan,J. Barbolla,P.A,Journal of Material Science:Materials in Electronics , 10 (1999) p.379-384 .
34.Zheng-Wen Fu,Liang-Yao,Qi-Zong Qin,Thin Solid Films 340 (1999) p.164-168 .
35.G. D. O’Clock Jr,Applied Physics Letterrs , 19 (1971),p.403
36.S. W. Park and H. B. Im , Thin Solid Films , 207 (1992), p258
37.A. G. Revesz,J. Allison,T. kirkendall,and J. Reynolds,Thin Solid Films,23 (1974) , p563 .
38.C. Chaneliere,S. Four,J. L. Autran,R. A. B. Devine,N. P. Sandler,Journal of Applied Physics,v.83,n.9 (1998) p.4823 .
39.Jong-Ho Yun,Shi-Woo Rhee,Thin Solid Films 292 (1997) p324-329 .
40.Shigeaki Zaima,Takeshi Furuta,and Yukio Yasuda,J. Electronchem. Soc. ,v.137, n.4 (1990) p.1297 .
41.Choon Ho An and Katsuhisa Sugimoto,J. Electrochem. Soc. , v.139 , n.7, (1992) p.1956 .
42.William R, Hitchens, Wilbur C. Krusell, And Daniel M. Dobkin,Mat. Res. Soc. Symp. Proc. ,v.284 (1993) p.499 .
43.Seok Ryong Jeon , Sung Wook Han , and Jong Wan Park,“Effect of rapid thermal annealing treatment on electrical properties and microstructure of tantalum oxide thin film deposited by plasma-enhanced chemical vapor deposition”, J. Appl. Phys. vol.77 , n.11,(1995) p.5978.
44.Y. Numasawa, S. Kamiyama , M. Zenke , and M.Sakamoto,“Ta2O5 Plasma CVD technology for DRAM Stacked Capacitors”,IEDM 89(1989) p.43 .
45.Sun-Oo Kim , Jeong Soo Byun and Hyeong Joon Kim, “The effect of substrate temperature on the composition and growth of tantalum oxide thinn films deposited by plasma-enhanced chemical vapor deposition “,Thin Solid Films,206 (1991) p102-p106 .
46.Hwan Seong Moon , Jae Suk Lee, Sung Wook Han , Jong Wan Park, “Effect of deposition temperature on dielectric properties of PECVD Ta2O5 thin film”,Journal of Material Science ,v.29 (1994) p.1545 .
47.Prakash A. Murawala , Mikio Sawai , Toshiaki Tatsuta , Osamu Tsuji , “Structural and Electrical Properties of Ta2O5 Grown by the Plasma-Enhanced Liquid Sorce CVD using Penta Ethoxy Tantalum Source”,Jpn. J. Appl. Phys. Part 1,No. 1B ,Vol.32 (1993) p.368-375 .
48.Sun-Oo Kim , Hyeong Joon Kim,“The effects of substrate and annealing ambient on the electrical properties of Ta2O5 thin films prepared by plasma enhanced chemical vapor deposition”,Thin Solid Films 253(1994) p.435 —439 .
49.Iwao Watanabe and Hideo Yoshihara ,“Ta-O(Ta-oxide) and Nb-O(Nb-oxide) Film Deposition Using an Electron Cyclotron Resonance Plasma”, Japanese Journal of Applied Physics , v.24 , n.6 ,June (1985) pp. L411-L413 .
50.Atsushi Nagahori* and Rishi Raj* ,“Electron Cyclotron Resonance Plasma-Enhanced Metalorganic Chemical Vapor Deposition of Tantalum Oxide Thin Films on Silicon near Room Temperature”,J. Am. Ceram. Soc. , 78[6] (1995) p.1585-1592 .
51.Il Kim, Jong-Seok Kim, Bok-Won Cho, Sung-Duck Ahn, John S. Chun, and Won-Jong Lee,“Effects of deposition temperature on the electrical properties of electron cyclotron resonance plasma-enhanced chemical vapor depostion Ta2O5 film and the formation of interfacial SiO2”, J. Mater. Res. V.10 No.11 (1995) p.2864.
52.R. A. B. Devine and L. Vallier , J. L. Autran , P. Paillet, and J. L. Leray ,“Electrical properties of Ta2O5 films obtained by plasma enhanced chemical vapor deposition using a TaF5”,Appl. Phys. Lett. , vol.68 , no.13 , (1996) p.1775 .
53.C. Chaneliere, S, Four, J. L. Autran, R. A. B. Devine ,“Dielectric Permittivity of Amorphous and Hexagonal Electron Cyclotron Resonance Plasma Deposited Ta2O5 Thin Films”,Electrochemical and Solid-State Letters , v.2 n.6 ,(1999) p.291-293 .
54.Ii Kim, John S. Chun, Won-Jong Lee* , “Effects of Bottom electrodes on dielectric properties of ECR-PECVD Ta2O5”, Materials Chemistry and Physics 44 (1996) p.288-292 .
55.Ii Kim, Sung-Duck AHN, Bok-Won CHO, Sung-Tae-AHN, Jeong Yong Lee, “Microstrocture and Electric Properties of Tantalum Oxide Thin Film Prepared by Electron Cyclotron Resonance Plasma-Enhanced Chemical Vapor Deposition”, Jpn. J.Appl. Phys. v.33, Part 1, No. 12A, (1994) p.6691-6698 .
56.Jun-Ying Zhang, Boon Lim, and Lan W. Boyd, “Characteristics of high quality tantalum oxide films deposited by photoinduced chemical vapor deposition”, Applied Physics Letters, v.73, n.16, (1998) p.2299.
57.Jun-Ying Zhang, Li-Jian Bie and Jan W. BOYD,“Formation of High Quality Tantalum Oxide Thin Films at 400℃ by 172 nm Radiation ”, Jpn. J. Appl. Phys. v.37, part 2 , No. 1A/B, (1998) PP. L27-L29 .
58.Masahiro Matsui, Satoshi Oka, Koji Yamagishi, Koichi Kuroiwa and Yasuo Tarui, “Photo-Process of Tantalum Oxide Films and Their Characteristics”, Jpn. J. Appl. Phys., v.27, n.4, (1988) p506-511
59.Yoji Imai, Akio Watanbe, Masakazu Mukaida, Kazuo Osato, Tatsuo Tsunoda. Tetsuya Kameyama, Kenzo Fukuda, “Stoichiomeetry of tantalum oxide films prepared by KrF excimer laser-induced chemical vapor deposition”, Thin Solid Films 261(1995) p.76-82
60.A. Watanabe, M. Mukaida, Y. Imai, K. Osato, T. Kameyama, K. Fukuda, “Morphology and structure of tantalum oxide deposited prepared by KrF excimer lacer CVD”, Journal of Materials Science, 28(1993) p.5363-5368
61.Yukio Nishimura, Kyoji Tokunaga* and Masaharu Tsuji, “Depossition of tantalum oxide films by ArF excimer laser chemical vapour deposition”, Thin Solid Films ,226 (1993)p144-148
62.M.B. Mooney, P.K Hurley, B.J. O’Sullivan, J.T. Beechinor, J-Y. Zhang, I.W. Boyd etc., “Characteristics of tantalum pentoxide dielectric films deposited on silicon by excimer-lamp assisted photo-induced CVD using an injection liquid source”, Microelectronic Engineering 48 (1999) p.283-286
63.B.R. Jooste and H.J. Viljoen, Journal of Material Research, V13, n2, February (1998), p475-482.
64.T.M. Reith and P.J. Ficalora, Journal of Vacuum Science and Technology A, V1, n3, (1983), p1362-1369.
65.A. Pignolet, G. Mohan Rao, and S.B. Krupanidhi, Thin Solid Films, 281-282 (1996), p415.
66.Zheng-Wen Fu, Liang-Yao Chen, Qi-Zong Qin, “Electrical characterization of Ta2O5 films deposited by laser reactive ablation of metallic Ta”, Thin Solid Films 340(1999) p164
67.Yokio Nishimura* , Akihiro Shinkawa, Hiroki Ujita, Masahara Tsuji, Masafumi Nakamura,“Deposition of tantalum oxide films by ArF excimer laser ablation”, Applied Surface Science 136 (1998) p22-28 .
68.Yokio Nishimura* , Hiroki Ujita, Masahara Tsuji,“Tantalum oxide film formation by excimer laser ablation”, Applied Surface Science 89 (1995) p.393-399
69.P. J. Martin, A. Bendavid, M. Swain, R. P. Netterfield, T. J. Kinder, W. G. Sainty, D. Drage and L. Wielunski, “Properties of thin films of tantalum oxide deposited by ion-assisted deposition”, Thin Solid Films, 239 (1994) p.181-185
70.J. Hudner. P.-E. Hellberg, D. Kusche, H. Ohlsen, “Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen” ,Thin Solid Films 281-282 (1996) p.415-418
71.V. Mikhelashvili and G. Eisenstein, “Electrical characteristics of Ta2O5 thin films deposited by electron beam gun evaporation”, Applied Physic Letters, v.75, n.18, (1999) p.2836
72.Jun-Ying Zhang, Li-Jian Bie, Vincent Dusastre, Ian W. Boyd, “Thin tantalum oxide films prepared by 172nm Excimer lamp irradiation using sol-gel method”, Thin Solid Films 318 (1998) p.252-256
73.T. Oishi, T. Nakzawa and A. Katou, Electron com. Jpn. 76 (1993), p50
74.陳培麗,"化學氣相沈積",真空科技,第五卷第二期, p4-16
75.莊達人,VLSI製造技術。
76.Hiroyuko Koyama, Satoshi Tanimoto, Koichi Kuroiwa and Yasuo Tarui, “Thermal Properties of Various Ta Precursor Used in Chemical Vapor Deposition of Tantalum Pentoxide”, Jpn. J. Appl. Phys., v.33, part 1 ,n.11, (1994)p.6291-6298
77.Choon Ho An and Katsuhisa Sugimoto, “Ellipsometric Examination of Structure and Growth Rate of Metallorganic Chemical Vapor Deposited Ta2O5 Films on Si(100)”,J. Electrochem. Soc., v.141, n.3, (1994)p.853
78.Koji Tominaga, Rusul Muhammet, Ichizo Kobayashi and Masaru Okada, “Preparation of (111)-Oriented β-Ta2O5 Thin Films by Chemical Vapor Deposition Using Metalorganic Precursors”﹐Jpn. J. Appl. Phys., v.31, part 2, n.5A, (1992)pp. L585-L587
79.K.-A. Son, A. Y. Mao, Y.-M. Sun, B. Y. Kim, F. Liu, A. Kamath, J. M. White, and D. L. Kwong﹐ “Chemical vapor deposition of ultrathin Ta2O5 films using Ta[N(CH3)2]5”﹐Apply Physic Letters, v.72,n.10, (1998)p.1187
80.Mashiro Matsui, Satoshi Oka, Koji Yamagishi, Koichi Kuroiwa and Yasuo Tarui﹐ “Photo-Process of Tantalum oxide Films and Their Characteristics”﹐Jpn. J. Appl. Phys., v27, n.4, (1998)p.506-511
81.Katarina Forsgren, Anders Harsta﹐ “Halide Chemical Vapor Deposition of Ta2O5」﹐Thin Solid Films, v.343-344, (1999)p.111-114
82.R. F. Cava, W. F. Peck and J. J. Krajewski, “Enhancement of the dielectric constant of Ta2O5 through substitution with TiO2 ”, Nature 377 (1995) 125
83.張志祥,「利用低壓化學氣相沈積法製作動態隨機存取記憶體應用之(Ta2O5)1-x-(TiO2)x介電薄膜的研究」,清華大學,博士論文(2000)
84.Towell, and S.B. Desu, “Structure and electrical properties of crystalline (1-x)Ta2O5-xAl2O3 thin films fabricated by Metalorganic solution deposition technique”, Appl. Phys. Lett. 71 (10), (1997) p.1341
85.R. J. Cava, W. F. Peck, Jr. , J. J. Krajewski, G. L. Roberts, B. P. Barber, H. M. O’Bryan, and P. L. Gammel, “Improvement of the dielectruc properties of Ta2O5 through substitution with Al2O3”,Appl. Phys. Lett., 70 (11), (1997) p.1396
86.Chandra S. Desu, Pooran C. Joshi, Seshu1 B. Desu, “Enhanced dielectric properties of modified Ta2O5 thin films”,Mat. Res. Innovat. , 2 (1999)p.299-302
87.R. J. Cava and J. J. Krajewski, 「Dielectric properties of Ta2O5-ZrO2 polycrystalline ceramic」, J. Appl. Phys. 83(3), (1998) p.1613
88.Jin-Won Kim, Sang-Don Nam, Seung-Hwan Lee, Seok-Jun Won, Wan-Don Kim, etc., “Electrical Properties of Crystalline Ta2O5 with Ru Electrode”, Jpn. J. Appl. Phys., v.39, (2000) p.2094-2097
89.I. Asano, M, Kunitomo, S. Yamamoto, R. Furukawa, T. Uemura, J. Kuroda, M. Kanai, M. Nakata, T. Tamaru, T. Kawage, etc. , “1.5nm Equivalent Thickness Ta2O5 High-k Dielectric with Rugged Si Suited for Mass Production of High Density DRAMs”,IEDM (1998) p.755
90.Y. S. Chun, B. J. Park, G. T. Geong, Y. S. Hwang, K. H. Lee, H. S. Jeong, T. Y. Jung and K. Kim, “ A New DRAM Cell Technology Using Merged Process with Storage Node and Memory Cell Contact for 4 Gb DRAM and Beyond ”, IEDM 98, (1998) 351
91.B. K. Moon, C. Isobe, J. Aoyama, “Insulating properties of tantalum pentoxide capacitor films obtained by annealing in dry ozone”,Journal of Applied Physics, v.85, n.3, (1999) p.1731
92.Dry-O2,Dry-N2 : IL Kim, Jong-Seok Kim, OH-Seung Kwon, Sung-Tae Ahn, John S. Chun, and Won-Jong Lee, “Effects of Annealing in O2 and N2 on the Electrical Properties of Tantalum Oxide Thin Films Prepared by Electron Cyclotron Resonance Plasma Enhanced Chemical Vapor Deposition”,Journal of Electronic Materials, v.24, n.10, (1995) p.1435
93.S. C. Sun and T. F Chen, “Reduction of Leakage Current in Chemical-Vapor-Depositied Ta2O5 Thin Films by Furnace N2O Annealing”,IEEE Transaction on Electron Device, v.44, n.6, (1997) p.1027
94.E. Atanassova, D.spassov, “Hydrogen annealing effect on the properties of thermal Ta2O5 on Si”,Microelectronic Journal , v.30 (1999) p.265-274
95.S. Tanumoto, M. Matsui, K. Kamisako, K. Kuroiwa, and T. Tarui, “Investigation on Leakage Current Reduction of Photo-CVD tantalum Oxide Films Accomplish by Active Oxygen Annealing”, J. Electrochem. Soc., v.139, n.1, (1992) p.320
96.W. K. Choi, L.S. Tan, J. Y. Lim, S. G. Pek , “Electrical characterization of RF sputter tantalum oxide films rapid thermal annealing with Ar, N2, O2 and N2O”,Thin solid Films 343-344, (1999) p.105-107
97.S. C. Sun, Member, IEEE, T. F. Chen, “Leakage current Reduction in Chemical-Vapor-Depositied Ta2O5 Films by Rapid Thermal Annealing in N2O” , IEEE Electron Device Letters, v.17, n.7, (1996) p.355
98.Satoshi Kamiyama, Hiroshi Suzuki, and Hirohito Watanabe, “Ultrathin Tantalum Oxide Capacitor Process Using Oxygen-Plasma Annealing”, J. Electrochem. Soc., n.141, n.5, (1994) p.1246
99.G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis and A. Pinczuk, G. Redinbo, R. Urdahl, and E.Ong, Z. Hasan, “Nitrogen plasma annealing for low temperature Ta2O5 films”,Applied Physic letters, v.72, n.11, (1998) p.1308
100.Hiroshi Shinriki, Member, IEEE, and Masayuki Nakata, “UV-O3 and Dry-O2:Two-step Annealed Chemical Vapor-Deposited Ta2O5”,IEEE Transcations on electron Devices, v.38, n.3, (1991) p.455
101.Wai Shing Lau, Merinnage Tamara Chandima Perera, Premila Babu, Aik Keong Ow, etc., “The superiority of N2O Plasma Annealing over O2 Plasma Annealing for Amorphous Tantalum pentoxide (Ta2O5) Films” , Jpn. J. Appl. Phys., v.37(1998)pp. L435-L437
102.Wai Shing Lau, Peng Wei Qian, Nathan P. Sandler, Kevin A. Mckinley and Paul K. Chu, “Evidence that N2O is a Stronger Oxidizing Agent than O2 for the Post-Deposition Annealing of Ta2O5 on Si Capacitors”, Jpn. J. Appl. Phys., v.36, part 1, n.2, (1997) p.661-666
103.R. A. B. Devine, “Nondestructive measurement of interfacial SiO2 films formed during depoition and annealing of Ta2O5”, Appl. Phys. Lett. 68(14), (1996) p.1924
104.H.-S. Yang, Y.S. Choi,and S.M. Cho, “Preparation and Properties of Ta2O5 Film Capacitors using TiSi2”, Journal of Electronic Materials, v.28, n.12, (1999)p.1414
105.Aicha A.R.Elshabini-Riad Fred D. “Thin Film Technology Handbook”,The McGraw-Hill Companies,Inc,ISBN0-07-115998-7
106.Chang-Hee Han, Kwang-Nam Cho, Jae-Eung OH, Su-Hyoun Paek, Chang-Soo Park,etc., “Barrier Metal Properties of Amorphous Tantalum Nitride Thin Films between Platinum and Silicon deposited using Remoted Plasma Metal Organic Chemical Vapor Method”, Jpn. J. Appl. Phys., v.37, part 1, No.5A , (1998)p.2646-2651
107.Kyung-Hoon Min, Kyu-Chang Chun, and Ki-Bum Kim, “Comparative study of tantalum and tantalum nitrides(Ta2N and TaN ) as a diffusion barrier for Cu metallization”, J. Vac. Sci. Technol. B, v.14, n.5, (1996)p.3262
108.Sung-Lae Cho, Ki-Bum Kim, Seok Hong Min, Hyun-Kook Shin, and Sam-Dong Kim, “Diffusion Barrier properties of Metallorganic Chemical vapor depoited Tantalum Nitride Films Against Cu metallization”, Journal of the electrochemical Society, 146(10), (1999) p.3724-3730
109.M. A. Farooq, S. P. Murarka, C. C. Chang and F. A. Baiochi, J. Appl. Phys. 65(8) , (1998) p.3017-3022
110.S. Kanamori, Thin Solid Films , 136 (1986) p.195-214
111.Xin Sun, Elzbieta Kolawa, Jen-Sue Chen, Jason S. Reid and Marc-A. Nicolet, “Properties of reactively sputter-deposited Ta-N thin films”,Thin Solid Films, 236 ,(1993) p.347-351
112.Bhola Mehrotra and Jim Stimmell,"Proper1ties of direct current magnetron reactively sputter TaN”,J. Vac. Sci. Technol. B5(6) ,(1987) p.1736
113.李佩娟,「以反應式濺鍍法製作低溫電阻係數 (Ta,Ti)N薄膜電阻,與高介電常數 (Ta2O5)1-x-(TiO2)x薄膜電容」,清華大學,碩士論文(1999)
114.M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier Property of Very Thin Ta and TaN Layers Against Copper Diffusion”,J. Electrochem. Soc. , v.145, n.7 (1998) p.2538
115.Haruo,Yamagishi,Masayoshi Miyauchi, “Thermal Oxidation of Sputter TaN Films and properties of Oxidized Films”, Jpn. J. Appl. Phys., v.26, n.6, (1987) p.852
116.H. N. Al-Shareef, O. Auciello, A. I. Kingon, “Electrical properties of ferroelectric thin film capacitors with hybrid(Pt, RuO2) electrodes for nonvolatile memory applications”, J. Appl. Phys. ,77(5), (1995)p.2146
117.Jun Lin, Nakabayasi Masaaki, Masaaki, Atsuhiro Tsukune, and Masao Yamad, “Ta2O5 thin films with exceptionally high dielectric constant”,Applied Physics Letters, v.74, n.18,(1999)p.2370
118.工業材料雜誌,170期,90年二月號, p.60
119. A. Tsuzumitani, Y. Okuno, J. Shibata, T. Shimizu, K. Yamamoto and Y. Mori, “ Ru-Ta2O5 MIM Capacitor toward 0.1 um DRAM Cell ”, Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, Yokyo, (1999) 492.
120. J. W. Kim, S. D. Nam, S. H. Lee, S. J. Won, W. D. Kim, C. Y. Yoo, Y. W. Park, S. I. Lee and M. Y. Lee, “ Electrical Properties of Ru/Ta2O5/Ru Capacitor for 1 Giga-scale DRAMs and Beyond ”, Extended Abstracts of the 1999 International Conference on Solid State Devices and Materials, Yokyo, (1999) 162.
121. H. N. AlShareef, K. D. Gifford, S. H. Rou, P. D. Hren, O. Auciello, A. I. Kingon, Integrated Ferroelectrics, (1993) P.321.
122. Lynnette D. Madsen, Louise Weaver, Henrik, Ljungcrantz, Alison J. Clark, J. of Electronic Mater., 27 (1998) p.418.
123. T. Maeder, L. Sagalowicz and P. Muralt, “Stabilized Platinum Electrodes for Ferroelectric Film Deposition using Ti, Ta and Zr Adhesion Layers”, Jpn. J. Appl. Phys., 37 (1998) 2007.
124. 吳世全, 電子期刊第五卷第五期, p.129.
125. J. R. McBride, G. W. Graham, C. R. Peters, and W. H. Weber, “Growth and characterization of reactively sputtered thin-film platinum oxides”, J. Appl. Phys. 69(3), (1991) p.1596.
126. Yoshio Abe, Midori Kawamura and Katsutaka Sasaki, “Preparation of PtO and α-PtO2 Thin Films by Reactive Sputtering and Their Electric Properties”, Jpn. J. Appl. Phys., Vol.38, Part 1 No.4A, (1999) p. 2092.
127. 陳力俊等人主編,微電子材料與製程,(2000)p.107
128. H. O. Pierson, “ Handbook of Chemical Vapor Deposition Principles, Technology and Applications”, Noyes Publications U. S. A., (1995)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top