跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/05 21:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康博正
研究生(外文):Bor-Jehng Kang
論文名稱:線型交流馬達驅動之磁浮定位系統
論文名稱(外文):Linear AC Motor Driven Magnetic Suspension Positioning System
指導教授:陳建祥廖聰明廖聰明引用關係
指導教授(外文):Jian-Shiang ChenChang-Ming Liaw
學位類別:博士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
中文關鍵詞:線型馬達磁滯電流控制脈寬調制變頻器磁浮定位系統
外文關鍵詞:linear motorhysteresis current controlPWM invertermagnetic suspension positioning system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文開發一以變頻供電線型交流馬達驅動及磁浮支撐之精密定位系統。此磁浮定位系統由各組成元件適當地搭配構成,其中雙側式線型永磁同步馬達由所提磁滯電流控制脈寬調制變頻器供電,並根據移動子之位置進行切換控制,以得良好之電磁推力產生特性。磁浮定位系統之動態模式在控制器之分析與設計上是不可或缺的,然精確之動態模式不易由推導獲得,因此本文將採由量測從事動態模式之估測。
一個變頻供電機電系統之驅動特性深受其內迴路電流切換控制性能之影響。磁滯脈寬調制技術具有架構簡單及操控強健等特點,而廣泛地應用於馬達之速度驅動系統。然而其輸出諧波之頻譜分佈特性變動大,而且當電流命令變小時其固定磁滯寬帶相對地變大,使得它不適用於位置伺服驅動。本文主要目的之一在於從事提昇磁滯脈寬調制機構於伺服驅動控制應用之能力。所提方法主要係即時調變磁滯寬帶使其輸出諧波頻譜固定地或散化式地分佈。所開發之電流控制技術先在單相電動振動機上測試其可行性及效能,再將其延伸設計三相電流控制變頻器並應用至所建之磁浮定位系統。模擬與實測結果均顯示在電流追蹤控制、諧波頻譜分佈和定位控制上,所提即時調變磁滯寬帶之脈寬調制技術具有優越之控制性能。
在定位控制器之設計上,為了使定位系統同時具有所欲之命令追蹤和負載調節控制需求,本文提出了一種結合H_inf回授控制、命令前向控制和模式跟隨控制之雙可調度控制技術。首先,採用H_inf迴路整型步驟設計回授控制器,其設計著重於抑制外擾和不確定性因素之影響,並確保閉迴路之穩定性。然後再輔加一個命令前向控制器以構成雙可調度控制架構,藉由前向控制器適當地修飾輸入命令,使所指定之命令追蹤控制性能也可以獨立地被滿足。當操作條件和參數變動時,再採用一個模式跟隨控制器來改善控制性能之劣化,使系統在擾動下仍可保有所預定之控制性能。
A single-stage magnetic suspended positioning stage directly driven by an inverter-fed linear ac motor with precision positioning capability is developed in this dissertation. The magnetic suspension positioning system is established with all constituted parts being properly matched and constructed. In the propulsion system, the double-sided linear permanent magnet synchronous motor (LPMSM) is adopted. The LPMSM is powered by a hysteresis current-controlled PWM inverter with commutation according to the moving member position information. The dynamic model is indispensable for controller design, but it is not easy to obtain accurately from physical derivation. Hence, the estimation approach is employed as an alternative to obtain the estimated one from measurements.
As generally recognized, the driving performance of an inverter-fed electromechanical system is significantly affected by the current switching control performance of its current-controlled PWM scheme, which forms the innermost loop of the multi-loop control system. Owing to its simplicity and robustness, the hysteresis PWM scheme has been widely employed in motor speed driving control. However, it is rarely used for position servo drive, since it possesses varying output harmonic spectrum, and the fixed current error bound becomes comparatively larger as the motor current becomes smaller. In this dissertation, the studies about the promotion of hysteresis PWM inverter for servo application are made. In the proposed control approaches, the error band of hysteresis PWM inverter is tuned to yield the desired constant and random harmonic spectrum distribution characteristics. Effectiveness of the developed control approaches is first tested in a single-phase electrodynamic shaker system. Then the designed three-phase inverter is used to power the magnetic suspension positioning system. Simulated and measured results show that better performances in current tracking control, harmonic spectrum distribution characteristics and position control can be achieved by the proposed varying-band hysteresis current-controlled PWM schemes.
As to the positioning control, in order to obtain the desired robust command tracking and load regulation control requirements simultaneously, a two-degrees-of-freedom (2DOF) control scheme combining the H_inf feedback control, the command feedforward control and the model following control is developed. The loop shaping H_inf design procedure is employed to find the feedback controller, which is emphasized in obtaining the desired disturbance and uncertainty rejection control requirements and the guarantee of closed-loop stability. Then, the H_inf feedback controller is augmented with a command feedforward controller to form the 2DOF control structure. Through properly shaping the command by the feedforward controller, the prescribed command tracking control performance can then be independently satisfied. As the operating condition and parameter changes occurred, a model following tracking error driven control is further employed to improve the control performance degradation. It follows that the prescribed control requirements at nominal case still can be preserved for the disturbed cases.
封面
摘要
誌謝
內容
第一章、簡介
第二章、磁浮定位系統架構與建模
第三章、磁滯寬帶可調式磁滯電流控制脈寬調制變頻器
第四章、電流控制脈寬調制變頻器供電之線型交流馬達
第五章、具模式跟隨響應之磁浮定位系統雙可調度H 位置控制器
第六章、結語
附錄、論文英文本
ABSTRACT
ACKNOWLEDGMENTS
CONTENTS
LIST OF TABLES
LIST OF FIGURES
LIST OF SYMBOLS
CHAPTER 1 INTRODUCTION]
1.1 Motivation
1.2 Literature Survey
1.3 Contributions and Organizations
CHAPTER 2 CONFIGURATION AND MODELING OF THE MAGNETIC SUSPENSION POSITIONING SYSTEM
2.1 Introduction
2.2 System configuration
2.3 Physical Modeling
2.3.1 Inverter-fed linear motor drive
2.3.2 Positioning stage
2.4 Dynamic Model Estimation from Measurements
CHAPTER 3 HYSTERESIS CURRENT-CONTROLLED PWM INVERTER WITH VARYING BAND
3.1 Introduction
3.2 Switchng Characteristics of the Conventional Hysteresis PWM Inverter
3.3 The Proposed Robust Constant Swithcing Frequency Hysteresis PWM Scheme
3.3.1 The proposed hysteresis PWM scheme
3.3.2 The proposed robust constant switching frequency controller
3.3.3 Simulated and measured results
3.4 The Proposed Robust Random Hysteresis PWM Scheme
3.4.1 Design of random hysteresis PWM scheme
3.4.2 The proposed robust spectrum shaping approach
3.4.3 Simulated and measured results
CHAPTER 4 LINEAR AC MOTOR FED BY CURRENT-CONTROLLED PWM INVERTER
4.1 Introduction
4.2 Ramp-Comparison Current-Controlled PWM Inverter
4.2.1 Current command generatng scheme
4.2.2 Ramp-compariso PWM switching scheme
4.2.3 Simulated and measured results
4.3 Constant Harmonic Frequency Hysteresis current-Controlled PWM Inverter
4.3.1 Basic analysis for conventional hysteresis PWM inverter
4.3.2 The proposed robust constant harmonic frequency control approach
4.3.3 Quantitatvie design of the proposed robust hysteresis PWM scheme
4.3.4 Simulated and measured result
4.4 Random Hysteresis current-Controlled PWM Inverter
4.4.1 the proposed random switching hysteresis PWM inverter
4.4.2 The proposed robust harmonic spectrum shaping approach
4.4.3 Simulated and measured results
CHAPTER 5 2DOF H POSITION CONTROLLER WITH MODEL REFERENCE RESPONSE FOR THE MAGNETIC SUSPENSION POSITIONING SYSTEM
5.1 Introduction
5.2 Configuration of the Proposed Position Control Scheme
5.3 Design of H Feedback Controller via Loop Shaping Technique
5.3.1 Loop shaping design method
5.3.2 H controller synthesis based on J-spectral factor ization
5.3.3 The proposed feedback controller design
5.4 Design of Command Feedforward Controller
5.4.1 Model reduction
5.4.2 Command feedforward controller design
5.5 Design of Model following Controller
5.6 Simulated and Measured Results
CHAPTER 6 CONCLUSIONS
REFERENCES
BIOGRAPHICAL NOTE
REFERENCES:
A. Magnetic Suspension and Positioning System
[1] S. Sakuta, K. Ogawa and K. Ueda, “Experimental studies on ultra-precision positioning,” Int. J. Japan Soc. Prec. Eng., vol. 27, no. 3, pp. 235-240, 1993.
[2] S. Moriyama, T. Harada and A. Takanashi, “Precision x-y stage with a piezo-driven fine-table,” Bull. Japan Soc. of Prec. Eng., vol. 22, no. 1, pp. 13-17, 1988.
[3] E. Furukawa, M. Mizuno and T. Hojo, “A twin-type piezo-driven translation mechanism,” Int. J. Japan Soc. Prec. Eng., vol. 28, no. 1, pp. 70-75, 1994.
[4] K. H. Park, S. K. Lee, J. H. Yi, S. H. Kim, Y. K. Kwak and I. A. Wang, “Contactless magnetically levitated silcon wafer transport system,” Mechatronics, vol. 6, no. 5, pp. 591-610, 1996.
[5] K. H. Park, K. Y. Ahn, S. H. Kim and Y. K. Kwak, “Wafer distribution system for a clean room using a novel magnetic suspension technique,” IEEE/ASME Trans. Mechatronics, vol. 3, no. 1, pp. 73-78, 1998.
[6] M. Weck and U. Wahner, “Linear magnetic bearing and levitation system for machine tools,” Annals of the CIRP, vol. 47, pp. 311-314, 1998.
[7] C. Schmidt, J. Heinzl and G. Brandenburg, “Control approaches for high-precision machine tools with air bearings,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 979-989, 1999.
[8] W. Li and X. Cheng, “Adaptive high-precision control of positioning tables — theory and experiments,” IEEE Trans. Contr. Syst. Technol., vol. 2, no. 3, pp. 265-270, 1994.
[9] M. Iezawa, A. Imagi and M. Tomisawa, “High-precision control of ac servo motor positioning systems by friction compensation,” Int. J. Japan Soc. Mech. Eng., vol. C-39, no. 3, pp. 477-483, 1996.
[10] S. B. Chang, S. H. Wu and Y. C. Hu, “Submicrometer overshoot control of rapid and precise positioning,” Precision Engineering, vol. 20, no. 3, pp. 161-170, 1997.
[11] S. J. Huang, J. Y. Yen and S. S. Lu, “Dual mode control of a system with friction,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 306-314, 1999.
[12] Y. H. Kim and F. L. Lewis, “Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision,” IEEE Trans. Contr. Syst. Technol., vol. 8, no. 1, pp. 118-126, 2000.
[13] P. K. Sinha, Electromagnetic Suspension — Dynamics & Control, IEE Control Engineering Series 30, Peter Peregrinus Ltd., U.K., 1987.
[14] B. Jayawant, “Electromagnetic suspension and levitation techniques,” Proc. Royal Society, Part A, vol. 416, pp. 245-320, 1988.
[15] R. L. Hollis, S. E. Salcudean and A. P. Allan, “A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control,” IEEE Trans. Robot. and Automat., vol. 7, no. 3, pp. 320-332, 1991.
[16] T. Higuchi and K. Oka, “Reluctance control magnetic suspension system-suspension system with permannt magnet and linear actuator,” Electrical Engineering in Japan, vol. 114, no. 7, pp. 115-123, 1991.
[17] F. Matsumura, Magnetic Suspension Technology, (in Japanese), Corona Publishing Co., Japan, 1993.
[18] K. Nagaya and M Ishikawa, “A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators,” IEEE Trans. Magnetics, vol. 31, no. 1, pp. 885-896, 1995.
[19] Y. K. Tzeng and T. C. Wang, “A novel compensation approach for self-sensing maglev system with controlled-PM electromagnets,” IEEE Trans. Magnetics, vol. 31, no. 6, pp. 4208-4210, 1995.
[20] Y. S. Hsu, Linear Driving Techniques and Its Applications, (in Chinese), Wen-Sen, Taiwan, 1996.
[21] L. S. Hung, A Multivariable Sliding Mode Control for Magnetic Suspension Systems and Its Applications, Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C., 1998.
B. Linear Motor System
[22] I. Boldea and S. A. Nasar, Linear Electric Motors: Theory, Design, and Practical Applications, Prentice Hall, New Jersey, 1987.
[23] A. Basak, Permanent-Magnet DC Linear Motors, Oxford University Press, New York, 1996.
[24] I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators, Cambridge University Press, UK, 1997.
[25] J. F. Gieras and Z. J. Piech, Linear Synchronous Motors: Transportation and Automation Systems, CRC Press, 1999.
[26] C. M. Liaw, Analysis for the Industrial Applications of Linear Motors, Project Report, Supported by Industrial Mechanical Laboratory, Industrial Technology Research Institute, June 1998.
[27] G. W. McLean, “Review of recent progress in linear motors,” IEE Proceedings-B, vol. 135, no. 6, pp. 380-416, 1988.
[28] R. B. Aronson, “Attack of the linear motors,” Manufacturing Engineering, pp. 60-71, May 1997.
[29] Z. Deng, I. Boldea and S, A. Nasar, "Forces and parameters of permanent magnet linear synchronous machines," IEEE Trans. Magnetics, vol. 23, no. 1, pp. 305-309, 1987.
[30] K. Hayafune and E. Masada, “Dynamics of the PM type linear synchronous motor for magnetically levitated carrier vehicle,” IEEE Trans. Magnetics, vol. 23, no. 5, pp. 2578-2580, 1987.
[31] R. Akmese and J. F. Eastham, “Dynamic performance of a brushless DC motor tubular drive system,” IEEE Trans. Magnetics, vol. 25, pp. 3269-3271, 1989.
[32] M. Watada, Y. Fukuya, D. Ebihara, T. Okada and T. Taura, “Study on kinetic characteristics of cylindrical moving coil linear DC motor for a vibrator,” IEEE Trans. Magnetics, vol. 31, no. 6, pp. 3725-3727, 1995.
[33] Y. Yabuuchi, M. Kobayashi, M. Watada, D. Ebihara, T. Okada and T. Taura, “Application of a cylindrical moving coil linear DC motor to printer head," IEEE Trans. Magnetics, vol. 32, no. 5, pp. 5028-5030, 1996.
[34] H. Wakiwaka, H. Yajima, S. Senoh, H. Yamada, J. Oda and T. Morimura, “Simplified thrust limit equation of linear DC motor,” IEEE Trans. Magnetics, vol. 32, no. 5, pp. 5073-5075, 1996.
[35] J. S. Moghani and J. F. Eastham, “The dynamic response of a linear brushless DC motor,” in Proc. International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, vol. 1, pp. 599-602.
[36] M. Sanada, S. Morimoto and Y. Takeda, “Interior permanent magnet linear synchronous motor for high-performance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 966-972, 1997.
C. Current-Controlled PWM Inverter
[37] N. Mohan, T. M. Undeland and W. P. Robins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, 1995.
[38] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, New York, 1996.
[39] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Ind. Appl., vol. 21, no. 4, pp. 562-570, 1985.
[40] J. Holtz, “Pulse modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992.
[41] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[42] J. Dixon, S. Tepper and L. Moran, “Practical evaluation of different modulation techniques for current-controlled voltage source inverters,” IEE Proc.-Electr. Power Appl., vol. 143, no. 4, pp. 301-306, 1996.
[43] H. Henao, G. A. Capolino and J. A. Martinez-Velasco, “A new structure of fuzzy-hysteresis current controller for vector-controlled induction machine drives,” in IEEE Power Electronics Specialists Conference, 1996, pp. 708-712.
[44] A. Tilli and A. Tonielli, “Sequential design of hysteresis current controller for three-phase inverter.” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 771-781, 1998.
[45] B. D. Min, J. H. Youm and B. H. Kwon, “SVM-based hysteresis current controller for three-phase PWM rectifier,” IEE Proc.-Electr. Power Appl., vol. 146, no. 2, pp. 225-230, 1999.
[46] M. Dawande and G. K. Dubey, “Bang-bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999.
[47] S. Ogasawara, M. Nishimura, H. Akagi, A. Nabae and Y. Nakanishi, “A high performance ac servo system with permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 33, no. 1, pp. 87-91, 1986.
[48] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Ind. Electron., vol. 37, no. 5, pp. 402-408, 1990.
[49] L. Malesani and P. Tenti, “A novel hysteresis control method for current controlled voltage-source PWM inverters with constant modulation frequency,” IEEE Trans. Ind. Appl., vol. 26, no. 1, pp. 88-92, 1990.
[50] L. Malesani, L. Rossetto, P. Tomasin and A. Zuccato, “Digital adaptive hysteresis current control with clocked commutations and wide operating range,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 316-325, 1996.
[51] L. Malesani, P. Mattavelli and P. Tomasin, “Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1194-1202, 1997.
[52] A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin and S. Legowski, “Random pulse width modulation techniques for converter-fed drive systems - a review,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1166-1175, 1994.
[53] A. M. Stanković, G. C. Verghese and D. J. Perreault, “Analysis and synthesis of randomized modulation schemes for power converters,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 680-693, 1995.
[54] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
[55] J. T. Boys and P. G. Handley, “Spread spectrum switching: low noise modulation techniques for PWM inverter drives,” IEE Proceedings-B, vol. 139, no. 3, pp. 252-260, 1992.
[56] C. B. Jacobina, A. M. N. Lima, E. R. C. Da Silva and A. M. Trzynadlowski, “Current control for induction motor drive using random PWM,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 704-712, 1998.
[57] S. Legowski, J. Bei and A. M. Tryznadlowski, “Analysis and implementation of a grey-noise PWM technique based on voltage space vectors,” in Proceedings of IEEE Applied Power Electronics Conference, 1992, pp. 586-593.
[58] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Tryznadlowski, “Power spectra of a PWM inverter with randomized pulse position,” IEEE Trans. Power Electron., vol. 9, no. 5, pp. 463-472, 1994.
[59] S. Legowski and A.M. Tryznadlowski, “Advanced random pulse width modulation technique for voltage-controlled inverter drive systems,” in Proceedings of IEEE Applied Power Electronics Conference, 1991, pp. 100-106.
[60] S. Y. R. Hui, S. Sathiakumar and K. K. Sung, “Novel random PWM schemes with weighted switching decision,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 945-951, 1997.
[61] G. A. Covic and J. T. Boys, “Noise quieting with random PWM AC drives,” IEE Proc.-Electr. Power Appl., vol. 145, no. 1, pp. 1-10, 1998.
[62] M. M. Bech, J. K. Pederson, F. Blaabjerg and A. M. Tryznadlowski, “A methodology for true comparison of analysis and measured frequency domain spectra in random PWM converters,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 578-585, 1999.
[63] M. M. Bech, F. Blaabjerg and J. K. Pedersen, “Random modulation techniques with fixed switching frequency for three-phase power converters,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 753-761, July 2000.
[64] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
[65] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter using existing system background noise: analysis, design and implementation,” IEE Proc.-Electr. Power Appl., vol. 147, no. 1, pp. 45-54, 2000.
[66] K. A. Corzine, “A hysteresis current-regulated control for multi-level drives,” IEEE Trans. Energy Conversion, vol. 15, no. 2, pp. 169-175, 2000.
[67] T. W. Chun and M. K. Choi, “Development of adaptive hysteresis band control strategy of PWM inverter with constant switching frequency,” in Proc. Applied Power Electronics Conference and Exposition, APEC’96, 1996, pp. 194-199.
[68] Q. Yao and D. G. Holmes, “A simple, novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency,” in Proc. Industrial Applications Society Annual Meeting, 1993, pp. 1122-1129.
[69] A. Tripathi and P. C. Sen, “Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters,” IEEE Trans. Ind. Electron., vol. 39, no. 1, pp. 63-73, Feb. 1992.
[70] M. A. Rahman, T. S. Radwan, A. M. Osheiba and A. E. Lashine, “Analysis of current controllers for voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 477-485, Aug. 1997.
D. Control Techniques
[71] B. K. Bose, ”Power electronics and motion control — technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp.902-909, 1993.
[72] K. Ohnishi, N. Matsui and Y. Hori, ”Estimation, identification, and sensorless control in motion control system,” Proceedings of the IEEE, vol. 82, no. 8, pp.1253-1265, 1994.
[73] B. K. Bose, ”Expert system, fuzzy logic, and neural network applications in power electronics and motion control,” Proceedings of the IEEE, vol. 82, no. 8, pp.1303-1323, 1994.
[74] A. De Carli and R. Caccia, “A comparison of some control strategies for motion control,” Mechatronics, vol. 5, no. 1, pp. 61-71, 1995.
[75] F. B. Yeh and C. D. Yang, Post Modern Control Theory and Design, Eurasia, Taiwan, R.O.C., 1991.
[76] J. C. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, Macmillan, New York, 1992.
[77] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice Hall, New Jersey, 1995.
[78] M. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, New Jercey, 1996.
[79] R. S. Sánchez-Peña and M. Sznaier, Robust Systems: Theory and Applications, John Wiley & Sons, Inc., New York, 1998.
[80] F. Matsumura, F. Fujita and M. Shimizu, “Robust stabilization of a magnetic suspension system using control theory,” Electrical Engineering in Japan, vol. 111, no. 7, pp. 117-124, 1991.
[81] T. H. Liu and C. P. Cheng, “Controller design for a sensorless permanent-magnet synchronous drive system,” IEE Proceedings-B, vol. 140, no. 6, pp. 369-378, 1993.
[82] D. M. Alter and T. C. Tsao, “Control of linear motors for machine tool feed drives: design and implementation of optimal feedback control,” ASME J. Dynam. Syst., Meas., Contr., vol. 118, pp. 649-656 1996.
[83] A. M. Mohamed, B. Vestgaard and I. Busch-Vishniac, “Real-time implementation of a robust controller for a 2-DOF magnetic micro-levitation positioner,” ASME J. Dynam. Syst., Meas., Contr., vol. 117, pp. 637-640, 1995.
[84] M. T. Lin and T. H. Liu, “Design and implementation for a digital synchronous reluctance drive,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1149-1164, 1998.
[85] T. Mita, M. Hirata, K. Murata and H. Zhang, “ control versus disturbance-observer-based control,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 488-495, 1998.
[86] C. Attaianese, A. Perfetto and G. Tomasso, “Robust position control of DC drives by means of controllers,” IEE Proc.-Electr. Power Appl., vol. 146, no. 4, pp. 391-396, 1999.
[87] T. Tsujino, K. Nakashima and T. Fujii, “Application of control and closed loop identification to a magnetic levitation system,” Asian Journal of Control, vol. 1, no. 4, pp. 283-296, 1999.
[88] D. McFarlane and K. Glover, “A loop shaping design procedure using synthesis,” IEEE Trans. Automat. Contr., vol. 37, no. 6, pp. 759-769, 1992.
[89] U. Christen, M. F. Weilenmann and H. P. Geering, “Design of and controllers with two degrees of freedom,” in Proceedings of the American Control Conference, 1994, pp. 2391-2395.
[90] L. Guo and M. Tomizuka, “High-speed and high-precision motion control with an optimal hybrid feedforward controller,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 2, pp. 110-122, 1997.
[91] C. M. Liaw, “Design of a two-degree-of-freedom controller for motor drives,” IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1215-1220, 1992.
[92] C. M. Liaw, Y. K. Chen, K. H. Chao and H. C. Chen, “Quantitative design and implementation of PI-D controller with model-following response for motor drive,” IEE Proc.-Electr. Power Appl., vol. 145, no. 2, pp. 98-104, 1998.
[93] Y. Dote, Servo Motor and Motion Control Using Digital Signal, Prentice-Hall, New Jersey, 1990.
[94] H. Hashimoto, H. Yamamoto, S. Yanagisawa and F. Harashima, “Brushless servo motor control using variable structure approach,” IEEE Trans. Ind. Appl., vol. 24, no. 1, pp. 160-170, 1988.
[95] P. Famouri, “Control of a linear permanent magnet brushless DC motor via exact linearization methods,” IEEE Trans. Energy Conversion, vol. 7, no. 3, pp. 544-551, 1992.
[96] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski, “High-performance nonlinear feedback control of a permanent magnet stepper motor,” IEEE Trans. Contr. Syst.Technol., vol. 1, no. 1, pp. 5-14, 1993.
[97] S. Mittal and C. H. Menq, “Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 4, pp. 268-280, 1997.
[98] L. Wang, Y. Wang, Q. Guo and R. Luo, “Neural network based brushless DC motor servo system,” in IEEE Proceedings on Industrial Electronics Society, 1998, vol. 1, pp. 67-71.
E. Others
[99] HP5527A Laser Positioning Transducer: Designer’s guide, Hewlett Packard Ltd., 1990.
[100] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery, IEEE Inc., New York, 1994.
[101] M. Ouyang, C. M. Liaw and C. T. Pan, “Model reduction by power decomposition and frequency response matching,” IEEE Trans. Automat. Contr., vol. 32, no. 1, pp. 59-62, 1987.
[102] C. M. Liaw, C. T. Pan and Y. C. Chen, “Reduction of transfer functions using dispersion analysis and the continued-fraction method,” Int. J. Systems Sci., vol. 17, no. 5, pp. 807-817, 1986.
[103] J. B. Wang and C. M Liaw, “Control of induction motor drive for improving operating characteristics and dynamic response,” Mechatronics, vol.7, no. 7, pp. 641-661, 1997.
[104] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999.
[105] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top