|
REFERENCES: A. Magnetic Suspension and Positioning System [1] S. Sakuta, K. Ogawa and K. Ueda, “Experimental studies on ultra-precision positioning,” Int. J. Japan Soc. Prec. Eng., vol. 27, no. 3, pp. 235-240, 1993. [2] S. Moriyama, T. Harada and A. Takanashi, “Precision x-y stage with a piezo-driven fine-table,” Bull. Japan Soc. of Prec. Eng., vol. 22, no. 1, pp. 13-17, 1988. [3] E. Furukawa, M. Mizuno and T. Hojo, “A twin-type piezo-driven translation mechanism,” Int. J. Japan Soc. Prec. Eng., vol. 28, no. 1, pp. 70-75, 1994. [4] K. H. Park, S. K. Lee, J. H. Yi, S. H. Kim, Y. K. Kwak and I. A. Wang, “Contactless magnetically levitated silcon wafer transport system,” Mechatronics, vol. 6, no. 5, pp. 591-610, 1996. [5] K. H. Park, K. Y. Ahn, S. H. Kim and Y. K. Kwak, “Wafer distribution system for a clean room using a novel magnetic suspension technique,” IEEE/ASME Trans. Mechatronics, vol. 3, no. 1, pp. 73-78, 1998. [6] M. Weck and U. Wahner, “Linear magnetic bearing and levitation system for machine tools,” Annals of the CIRP, vol. 47, pp. 311-314, 1998. [7] C. Schmidt, J. Heinzl and G. Brandenburg, “Control approaches for high-precision machine tools with air bearings,” IEEE Trans. Ind. Electron., vol. 46, no. 5, pp. 979-989, 1999. [8] W. Li and X. Cheng, “Adaptive high-precision control of positioning tables — theory and experiments,” IEEE Trans. Contr. Syst. Technol., vol. 2, no. 3, pp. 265-270, 1994. [9] M. Iezawa, A. Imagi and M. Tomisawa, “High-precision control of ac servo motor positioning systems by friction compensation,” Int. J. Japan Soc. Mech. Eng., vol. C-39, no. 3, pp. 477-483, 1996. [10] S. B. Chang, S. H. Wu and Y. C. Hu, “Submicrometer overshoot control of rapid and precise positioning,” Precision Engineering, vol. 20, no. 3, pp. 161-170, 1997. [11] S. J. Huang, J. Y. Yen and S. S. Lu, “Dual mode control of a system with friction,” IEEE Trans. Contr. Syst. Technol., vol. 7, no. 3, pp. 306-314, 1999. [12] Y. H. Kim and F. L. Lewis, “Reinforcement adaptive learning neural-net-based friction compensation control for high speed and precision,” IEEE Trans. Contr. Syst. Technol., vol. 8, no. 1, pp. 118-126, 2000. [13] P. K. Sinha, Electromagnetic Suspension — Dynamics & Control, IEE Control Engineering Series 30, Peter Peregrinus Ltd., U.K., 1987. [14] B. Jayawant, “Electromagnetic suspension and levitation techniques,” Proc. Royal Society, Part A, vol. 416, pp. 245-320, 1988. [15] R. L. Hollis, S. E. Salcudean and A. P. Allan, “A six-degree-of-freedom magnetically levitated variable compliance fine-motion wrist: design, modeling, and control,” IEEE Trans. Robot. and Automat., vol. 7, no. 3, pp. 320-332, 1991. [16] T. Higuchi and K. Oka, “Reluctance control magnetic suspension system-suspension system with permannt magnet and linear actuator,” Electrical Engineering in Japan, vol. 114, no. 7, pp. 115-123, 1991. [17] F. Matsumura, Magnetic Suspension Technology, (in Japanese), Corona Publishing Co., Japan, 1993. [18] K. Nagaya and M Ishikawa, “A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators,” IEEE Trans. Magnetics, vol. 31, no. 1, pp. 885-896, 1995. [19] Y. K. Tzeng and T. C. Wang, “A novel compensation approach for self-sensing maglev system with controlled-PM electromagnets,” IEEE Trans. Magnetics, vol. 31, no. 6, pp. 4208-4210, 1995. [20] Y. S. Hsu, Linear Driving Techniques and Its Applications, (in Chinese), Wen-Sen, Taiwan, 1996. [21] L. S. Hung, A Multivariable Sliding Mode Control for Magnetic Suspension Systems and Its Applications, Ph.D. dissertation, National Tsing Hua University, Taiwan, R.O.C., 1998. B. Linear Motor System [22] I. Boldea and S. A. Nasar, Linear Electric Motors: Theory, Design, and Practical Applications, Prentice Hall, New Jersey, 1987. [23] A. Basak, Permanent-Magnet DC Linear Motors, Oxford University Press, New York, 1996. [24] I. Boldea and S. A. Nasar, Linear Electric Actuators and Generators, Cambridge University Press, UK, 1997. [25] J. F. Gieras and Z. J. Piech, Linear Synchronous Motors: Transportation and Automation Systems, CRC Press, 1999. [26] C. M. Liaw, Analysis for the Industrial Applications of Linear Motors, Project Report, Supported by Industrial Mechanical Laboratory, Industrial Technology Research Institute, June 1998. [27] G. W. McLean, “Review of recent progress in linear motors,” IEE Proceedings-B, vol. 135, no. 6, pp. 380-416, 1988. [28] R. B. Aronson, “Attack of the linear motors,” Manufacturing Engineering, pp. 60-71, May 1997. [29] Z. Deng, I. Boldea and S, A. Nasar, "Forces and parameters of permanent magnet linear synchronous machines," IEEE Trans. Magnetics, vol. 23, no. 1, pp. 305-309, 1987. [30] K. Hayafune and E. Masada, “Dynamics of the PM type linear synchronous motor for magnetically levitated carrier vehicle,” IEEE Trans. Magnetics, vol. 23, no. 5, pp. 2578-2580, 1987. [31] R. Akmese and J. F. Eastham, “Dynamic performance of a brushless DC motor tubular drive system,” IEEE Trans. Magnetics, vol. 25, pp. 3269-3271, 1989. [32] M. Watada, Y. Fukuya, D. Ebihara, T. Okada and T. Taura, “Study on kinetic characteristics of cylindrical moving coil linear DC motor for a vibrator,” IEEE Trans. Magnetics, vol. 31, no. 6, pp. 3725-3727, 1995. [33] Y. Yabuuchi, M. Kobayashi, M. Watada, D. Ebihara, T. Okada and T. Taura, “Application of a cylindrical moving coil linear DC motor to printer head," IEEE Trans. Magnetics, vol. 32, no. 5, pp. 5028-5030, 1996. [34] H. Wakiwaka, H. Yajima, S. Senoh, H. Yamada, J. Oda and T. Morimura, “Simplified thrust limit equation of linear DC motor,” IEEE Trans. Magnetics, vol. 32, no. 5, pp. 5073-5075, 1996. [35] J. S. Moghani and J. F. Eastham, “The dynamic response of a linear brushless DC motor,” in Proc. International Conference on Power Electronics, Drives and Energy Systems for Industrial Growth, 1996, vol. 1, pp. 599-602. [36] M. Sanada, S. Morimoto and Y. Takeda, “Interior permanent magnet linear synchronous motor for high-performance drives,” IEEE Trans. Ind. Appl., vol. 33, no. 4, pp. 966-972, 1997. C. Current-Controlled PWM Inverter [37] N. Mohan, T. M. Undeland and W. P. Robins, Power Electronics: Converters, Applications and Design, John Wiley & Sons, 1995. [38] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, New York, 1996. [39] D. M. Brod and D. W. Novotny, “Current control of VSI-PWM inverters,” IEEE Trans. Ind. Appl., vol. 21, no. 4, pp. 562-570, 1985. [40] J. Holtz, “Pulse modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, pp. 410-420, 1992. [41] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998. [42] J. Dixon, S. Tepper and L. Moran, “Practical evaluation of different modulation techniques for current-controlled voltage source inverters,” IEE Proc.-Electr. Power Appl., vol. 143, no. 4, pp. 301-306, 1996. [43] H. Henao, G. A. Capolino and J. A. Martinez-Velasco, “A new structure of fuzzy-hysteresis current controller for vector-controlled induction machine drives,” in IEEE Power Electronics Specialists Conference, 1996, pp. 708-712. [44] A. Tilli and A. Tonielli, “Sequential design of hysteresis current controller for three-phase inverter.” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 771-781, 1998. [45] B. D. Min, J. H. Youm and B. H. Kwon, “SVM-based hysteresis current controller for three-phase PWM rectifier,” IEE Proc.-Electr. Power Appl., vol. 146, no. 2, pp. 225-230, 1999. [46] M. Dawande and G. K. Dubey, “Bang-bang current control with predecided switching frequency for switch-mode rectifiers,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 61-66, 1999. [47] S. Ogasawara, M. Nishimura, H. Akagi, A. Nabae and Y. Nakanishi, “A high performance ac servo system with permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 33, no. 1, pp. 87-91, 1986. [48] B. K. Bose, “An adaptive hysteresis-band current control technique of a voltage-fed PWM inverter for machine drive system,” IEEE Trans. Ind. Electron., vol. 37, no. 5, pp. 402-408, 1990. [49] L. Malesani and P. Tenti, “A novel hysteresis control method for current controlled voltage-source PWM inverters with constant modulation frequency,” IEEE Trans. Ind. Appl., vol. 26, no. 1, pp. 88-92, 1990. [50] L. Malesani, L. Rossetto, P. Tomasin and A. Zuccato, “Digital adaptive hysteresis current control with clocked commutations and wide operating range,” IEEE Trans. Ind. Appl., vol. 32, no. 2, pp. 316-325, 1996. [51] L. Malesani, P. Mattavelli and P. Tomasin, “Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction,” IEEE Trans. Ind. Appl., vol. 33, no. 5, pp. 1194-1202, 1997. [52] A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin and S. Legowski, “Random pulse width modulation techniques for converter-fed drive systems - a review,” IEEE Trans. Ind. Appl., vol. 30, no. 5, pp. 1166-1175, 1994. [53] A. M. Stanković, G. C. Verghese and D. J. Perreault, “Analysis and synthesis of randomized modulation schemes for power converters,” IEEE Trans. Power Electron., vol. 10, no. 6, pp. 680-693, 1995. [54] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991. [55] J. T. Boys and P. G. Handley, “Spread spectrum switching: low noise modulation techniques for PWM inverter drives,” IEE Proceedings-B, vol. 139, no. 3, pp. 252-260, 1992. [56] C. B. Jacobina, A. M. N. Lima, E. R. C. Da Silva and A. M. Trzynadlowski, “Current control for induction motor drive using random PWM,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 704-712, 1998. [57] S. Legowski, J. Bei and A. M. Tryznadlowski, “Analysis and implementation of a grey-noise PWM technique based on voltage space vectors,” in Proceedings of IEEE Applied Power Electronics Conference, 1992, pp. 586-593. [58] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Tryznadlowski, “Power spectra of a PWM inverter with randomized pulse position,” IEEE Trans. Power Electron., vol. 9, no. 5, pp. 463-472, 1994. [59] S. Legowski and A.M. Tryznadlowski, “Advanced random pulse width modulation technique for voltage-controlled inverter drive systems,” in Proceedings of IEEE Applied Power Electronics Conference, 1991, pp. 100-106. [60] S. Y. R. Hui, S. Sathiakumar and K. K. Sung, “Novel random PWM schemes with weighted switching decision,” IEEE Trans. Power Electron., vol. 12, no. 6, pp. 945-951, 1997. [61] G. A. Covic and J. T. Boys, “Noise quieting with random PWM AC drives,” IEE Proc.-Electr. Power Appl., vol. 145, no. 1, pp. 1-10, 1998. [62] M. M. Bech, J. K. Pederson, F. Blaabjerg and A. M. Tryznadlowski, “A methodology for true comparison of analysis and measured frequency domain spectra in random PWM converters,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 578-585, 1999. [63] M. M. Bech, F. Blaabjerg and J. K. Pedersen, “Random modulation techniques with fixed switching frequency for three-phase power converters,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 753-761, July 2000. [64] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000. [65] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter using existing system background noise: analysis, design and implementation,” IEE Proc.-Electr. Power Appl., vol. 147, no. 1, pp. 45-54, 2000. [66] K. A. Corzine, “A hysteresis current-regulated control for multi-level drives,” IEEE Trans. Energy Conversion, vol. 15, no. 2, pp. 169-175, 2000. [67] T. W. Chun and M. K. Choi, “Development of adaptive hysteresis band control strategy of PWM inverter with constant switching frequency,” in Proc. Applied Power Electronics Conference and Exposition, APEC’96, 1996, pp. 194-199. [68] Q. Yao and D. G. Holmes, “A simple, novel method for variable-hysteresis-band current control of a three phase inverter with constant switching frequency,” in Proc. Industrial Applications Society Annual Meeting, 1993, pp. 1122-1129. [69] A. Tripathi and P. C. Sen, “Comparative analysis of fixed and sinusoidal band hysteresis current controllers for voltage source inverters,” IEEE Trans. Ind. Electron., vol. 39, no. 1, pp. 63-73, Feb. 1992. [70] M. A. Rahman, T. S. Radwan, A. M. Osheiba and A. E. Lashine, “Analysis of current controllers for voltage-source inverter,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 477-485, Aug. 1997. D. Control Techniques [71] B. K. Bose, ”Power electronics and motion control — technology status and recent trends,” IEEE Trans. Ind. Appl., vol. 29, no. 5, pp.902-909, 1993. [72] K. Ohnishi, N. Matsui and Y. Hori, ”Estimation, identification, and sensorless control in motion control system,” Proceedings of the IEEE, vol. 82, no. 8, pp.1253-1265, 1994. [73] B. K. Bose, ”Expert system, fuzzy logic, and neural network applications in power electronics and motion control,” Proceedings of the IEEE, vol. 82, no. 8, pp.1303-1323, 1994. [74] A. De Carli and R. Caccia, “A comparison of some control strategies for motion control,” Mechatronics, vol. 5, no. 1, pp. 61-71, 1995. [75] F. B. Yeh and C. D. Yang, Post Modern Control Theory and Design, Eurasia, Taiwan, R.O.C., 1991. [76] J. C. Doyle, B. Francis and A. Tannenbaum, Feedback Control Theory, Macmillan, New York, 1992. [77] M. Green and D. J. N. Limebeer, Linear Robust Control, Prentice Hall, New Jersey, 1995. [78] M. Zhou, J. C. Doyle and K. Glover, Robust and Optimal Control, Prentice-Hall, New Jercey, 1996. [79] R. S. Sánchez-Peña and M. Sznaier, Robust Systems: Theory and Applications, John Wiley & Sons, Inc., New York, 1998. [80] F. Matsumura, F. Fujita and M. Shimizu, “Robust stabilization of a magnetic suspension system using control theory,” Electrical Engineering in Japan, vol. 111, no. 7, pp. 117-124, 1991. [81] T. H. Liu and C. P. Cheng, “Controller design for a sensorless permanent-magnet synchronous drive system,” IEE Proceedings-B, vol. 140, no. 6, pp. 369-378, 1993. [82] D. M. Alter and T. C. Tsao, “Control of linear motors for machine tool feed drives: design and implementation of optimal feedback control,” ASME J. Dynam. Syst., Meas., Contr., vol. 118, pp. 649-656 1996. [83] A. M. Mohamed, B. Vestgaard and I. Busch-Vishniac, “Real-time implementation of a robust controller for a 2-DOF magnetic micro-levitation positioner,” ASME J. Dynam. Syst., Meas., Contr., vol. 117, pp. 637-640, 1995. [84] M. T. Lin and T. H. Liu, “Design and implementation for a digital synchronous reluctance drive,” IEEE Trans. Aerosp. Electron. Syst., vol. 34, no. 4, pp. 1149-1164, 1998. [85] T. Mita, M. Hirata, K. Murata and H. Zhang, “ control versus disturbance-observer-based control,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 488-495, 1998. [86] C. Attaianese, A. Perfetto and G. Tomasso, “Robust position control of DC drives by means of controllers,” IEE Proc.-Electr. Power Appl., vol. 146, no. 4, pp. 391-396, 1999. [87] T. Tsujino, K. Nakashima and T. Fujii, “Application of control and closed loop identification to a magnetic levitation system,” Asian Journal of Control, vol. 1, no. 4, pp. 283-296, 1999. [88] D. McFarlane and K. Glover, “A loop shaping design procedure using synthesis,” IEEE Trans. Automat. Contr., vol. 37, no. 6, pp. 759-769, 1992. [89] U. Christen, M. F. Weilenmann and H. P. Geering, “Design of and controllers with two degrees of freedom,” in Proceedings of the American Control Conference, 1994, pp. 2391-2395. [90] L. Guo and M. Tomizuka, “High-speed and high-precision motion control with an optimal hybrid feedforward controller,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 2, pp. 110-122, 1997. [91] C. M. Liaw, “Design of a two-degree-of-freedom controller for motor drives,” IEEE Trans. Automat. Contr., vol. 37, no. 8, pp. 1215-1220, 1992. [92] C. M. Liaw, Y. K. Chen, K. H. Chao and H. C. Chen, “Quantitative design and implementation of PI-D controller with model-following response for motor drive,” IEE Proc.-Electr. Power Appl., vol. 145, no. 2, pp. 98-104, 1998. [93] Y. Dote, Servo Motor and Motion Control Using Digital Signal, Prentice-Hall, New Jersey, 1990. [94] H. Hashimoto, H. Yamamoto, S. Yanagisawa and F. Harashima, “Brushless servo motor control using variable structure approach,” IEEE Trans. Ind. Appl., vol. 24, no. 1, pp. 160-170, 1988. [95] P. Famouri, “Control of a linear permanent magnet brushless DC motor via exact linearization methods,” IEEE Trans. Energy Conversion, vol. 7, no. 3, pp. 544-551, 1992. [96] M. Bodson, J. N. Chiasson, R. T. Novotnak and R. B. Rekowski, “High-performance nonlinear feedback control of a permanent magnet stepper motor,” IEEE Trans. Contr. Syst.Technol., vol. 1, no. 1, pp. 5-14, 1993. [97] S. Mittal and C. H. Menq, “Precision motion control of a magnetic suspension actuator using a robust nonlinear compensation scheme,” IEEE/ASME Trans. Mechatronics, vol. 2, no. 4, pp. 268-280, 1997. [98] L. Wang, Y. Wang, Q. Guo and R. Luo, “Neural network based brushless DC motor servo system,” in IEEE Proceedings on Industrial Electronics Society, 1998, vol. 1, pp. 67-71. E. Others [99] HP5527A Laser Positioning Transducer: Designer’s guide, Hewlett Packard Ltd., 1990. [100] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machinery, IEEE Inc., New York, 1994. [101] M. Ouyang, C. M. Liaw and C. T. Pan, “Model reduction by power decomposition and frequency response matching,” IEEE Trans. Automat. Contr., vol. 32, no. 1, pp. 59-62, 1987. [102] C. M. Liaw, C. T. Pan and Y. C. Chen, “Reduction of transfer functions using dispersion analysis and the continued-fraction method,” Int. J. Systems Sci., vol. 17, no. 5, pp. 807-817, 1986. [103] J. B. Wang and C. M Liaw, “Control of induction motor drive for improving operating characteristics and dynamic response,” Mechatronics, vol.7, no. 7, pp. 641-661, 1997. [104] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999. [105] C. M. Liaw and S. J. Chiang, “Robust control of multi-module current-mode controlled converters,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
|