跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉啟東
研究生(外文):Chii-Tung Liu
論文名稱:醫學影像查詢與傳輸技術之研究
論文名稱(外文):A Study on Medical Image Retrieval and Communication
指導教授:王家祥
指導教授(外文):Jia-Shung Wang
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:82
中文關鍵詞:醫學影像檢索視訊壓縮
外文關鍵詞:content-based medical image retrievalvideo compression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文旨在探討醫學影像上的兩個問題,一是如何幫助醫生收集、存取影像以供教育之用,另一是提供影像傳輸的解決方案以供遠距醫療網之用。
醫學影像不像一般自然影像可以容許失真,影像品質在診斷上是很重要的,因此在傳輸或儲存時,醫學影像通常是使用非失真型壓縮。一般而言,醫學影像是以特定的方式在人體的特定部位取像,若我們鎖定在特定影像並運用這方面的知識在壓縮上,就能達到更高的壓縮比而不會損失醫師診斷所需的必要資訊。為了有效降低傳輸或儲存影像所需的頻寬,我們提出一種分割影像的技術,可用來在胸腔X-光片自動分出醫生感興趣的區域(ROI),該區域是由肋骨的最外圍所包圍起來的。在區域內使用非失真壓縮,而區域外則使用失真壓縮。
為了幫助放射學家收集醫學影像以供鑑別診斷教學之用,我們提出了一種以內容為基礎的影像存取系統來將視覺上相似的影像群聚在一起,並以之分析類似症狀之間的異同。該系統提供了一個視覺化的介面以方便使用者輸入或查詢其感興趣的區域之影像。我們用自調適類神經網路(Self-Organizing Map)作為群聚的工具,並以快速傅立葉轉換(FFT)擷取影像特徵。實驗結果顯示我們的方法可以有效容忍使用者在框ROI區域時的變異性,並能正確取回所要的影像。
在遠距醫療的領域,由偏遠地區傳輸視訊資料至醫療中心是很重要的。為了傳送視訊,有兩點需要考慮:一是傳輸時要有辦法避免斷線以應付緊急手術。二是為了成本考量,偏遠地區的視訊工作站可能在運算能力與頻寬上都無法與醫療中心相比,因此必須要能動態的調整壓縮運算量以適應不同的運算能力與頻寬。基於以上的考量,我們提出兩種低頻寬視訊壓縮演算法以符合所求。為了避免斷線,我們使用雙通道來傳送視訊,而為了避免浪費資源,雖然兩個通道上傳送的是相同的視訊來源,但卻是用不同的編碼方式,當兩個通道的資料都被收到時,影像品質可以比收到單一通道時還好。
而為了動態調整運算量,我們提出一種演算法讓使用者可以設定所需的運算量而仍能維持相當的影像品質。我們在區塊層(block-level)與框架層(frame-level)分別控制所需的運算量以便達到整體最佳的運算量-失真度(complexity-distortion)比。
This study addresses the problems dealing with medical images - to assist the doctors to collect/retrieve visually similar images for education usage, and to provide image communication solution for telemedicine.
The quality of medical images is crucial in diagnosis. Unlike common natural images, medical images are more specific and could not be distorted during transmission and storage. Normally, medical images are taken under special condition and specific to the special part of human body. If we could utilize the domain knowledge of specific type of medical images, higher compression ratio could be achieved without losing any useful diagnostic information. In order to reduce the cost of storage and transmission bandwidth, we proposed a segmentation method to automatically locate the ROI area in a chest radiograph medical image, which is enclosed by ribs. By utilizing the knowledge of significant edge of ribs, our method can successfully locate the area that is bounded by ribs. The located ROI area is then compressed by the improved SAMAR method, and the non-ROI area is compressed by JPEG.
To help radiologists to collect useful medical images for the tutorial of differential diagnosis, we proposed a content-based image retrieval system to cluster visually similar image patterns, and to mine the similarity and differentiation between similar syndromes. The system uses visual-based user interface to allow the user to enter or query an image by selecting the region of interest (ROI) regions; and uses a neural network method to classify the relationship between the images stored in database. The system will output a set of candidate images that are textural-similar to the query image. In the implementation, we extract the major 2-D FFT coefficients to represent the texture features and uses Kohonen self-organizing network to cluster those extracted FFT coefficients.
In the field of telemedicine, transmitting medical video stream from remote hamlet to clinic is necessary and important. For some consequential operations, we need to build a failure-free communication during some emergency operations. We propose a scalable low bit rate failure-free video-coding algorithm for such transmission. For each video sequence in the failure-free video transmission, two channels are utilized to transmit the same video source. In the receiver end, the video can be reconstructed by any single encoded bitstream. While receiving two encoded bitstreams, the image quality can be improved by combining two bitstreams. In this study, we develop a motion vector refinement technique to improve the image quality.
To meet the criteria of real-time transmission, we proposed a complexity-adaptive fast block-matching algorithm that allows users to terminate processing at any target computational complexity. Two complexity-adaptive implementations, frame level complexity allocation and block level complexity allocation, are developed to approach the global complexity-distortion optimization. In addition, a buffer control strategy was proposed to dynamically adjust the target complexity.
封面
CHAPTER 1 INTRODUCTION
CHAPTER 2 FEATURE EXTRACTION
2.1 INTRODUCTION
2.2 GABOR FILTER
2.3 TEXTURE EXTRACTION BY FOURIER TRANSFORM
2.4 FEATURE EXTRACTION
2.4.1 Defining Coordinate System
2.4.2 Feature Extraction Using FFT
CHAPTER 3 CLUSTERNG BY SELF-ORGANIZING NETWORK
3.1 SELF-ORGANIZING NETWORKS
3.1.1 The SOM lgorithm
3.1.2 Training SOM in Batch Mode
3.2 THE DECISION OF CLUSTERING
3.3 QUERY PROCESSING
3.3.1 Simple Query
3.3.2 Complex Query
3.4 ASSISTIING TEACHING DIFFERENTIAL DIAGNOSIS
3.5 EXPERIMENTAL RESULTS
3.5.1 Query Result
CHAPTER 4 CLASSIFYING THEABNORMAL AREA OF LUNG
4.1 INTRODUCTION
4.2 TOPOGRAPHIC INDEPENDENT COMPONENT ANALYSIS
4.2.1 Lung Cancer Experiments
4.2.2 Normal Tisue Experiments
4.2.3 Comparisons
4.3 SUPPOR VECTOR MACHINE
4.4 CLASSIFICATION RESULTS
CHAPTER 5 KNOWLEDGEBASED COMPRESSION
5.1 DEFINITION OF THE ROI AREA
5.2 EDGE DETECTION FILTER
5.3 LOCATING THE ROI AREA
5.4 ROI-BASED COMPRESSION
5.4.1 System Flow
5.5 LOSSLESS AND LOSSY COMPRESSION
5.5.1 Lossless Compression
5.5.2 Principle of Predictive Based compression
5.5.3 The Sequential Lossless Model of JPEG
5.5.4 Lossless Compression Using Improved SAMAR
5.6 EXPREIMENTAL RESULTS
CHAPTER 6 FAILURE-FREE VIDEO COMMUNICATION
6.1 REFINEMENT OF MOTION VECTORS
6.2 SCALABLE VIDEO CODING SCHEME
6.2.1 Encoding Scheme
6.2.2 Decoding Scheme
6.3 EXPERIMENTAL RESULTS
CHAPTER 7 COMPLEXITY-ADAPTIVE COMPRESSION FOR VIDEO COMMUNICATION
7.1 COMPLEXITY CONTROL
7.1.1 Buffer Control Strategy
7.1.2 Predictive Complexity-Distorition Benefit List
7.2 COMPLEXITY-ADAPTIE BLOCK MATCHING ALGORITHM DESIGN
7.3 EXPERIMENTAL RESULTS
CHAPTER 8 CONCLUSIONS AND FUTURE WORKS
8.1 CONCLUSIONS
8.2 DIRECTION FOR FUTURE WORKS
REFERENCES
[1] J.S. Taur, and C.W. Tao, “Medical image compression using principal component analysis,” Proc. Int. Conf. Image Processing, vol. 6, pp. 903-906, 1996.
[2] M.B. Kim, Y.D. Cho, D.K. Kim, and N.K. Ha, “On the compression of medical images with regions of interest (ROIs),” in Proceedings SPIE Int. Conf. Visual Commun. and Image Proc., vol. 2501, pp. 733-744, Taipei, May 1995.
[3] J. Ström, and P.C. Cosman. “Medical Image Compression with Lossless Regions of Interest,” Signal Processing, vol. 59, no 2, pp. 155-171, June 1997.
[4] M. Das and N. K. Loh, "New studies on adaptive predictive coding of images using multiplicative autoregressive models," in IEEE Region 10 Conf. on Communication and Computing, Sept. 1990, vol. 2, pp. 442-446.
[5] S. Burgett and M. Das, "Adaptive predictive image coding using two-dimensional multiplicative autoregressive models," in Proc. 34th Midwest Symposium on Circuits and Systems, May 1991, vol. 2, pp. 633-636.
[6] S. R. Burgett and M. Das, "Multiresolution multiplicative autoregressive coding of images," in IEEE International Conference on Systems Engineering, Aug. 1991, pp. 276-279.
[7] M. Das and S. Burgett; “Lossless compression of medical images using two-dimensional multiplicative autoregressive models”, IEEE Trans. Med. Imaging, vol. 12, pp. 721-726, 1993.
[8] M. Das “Efficient method for lossless image compression using suboptimal, adaptive multiplicative autoregressive models,” Electronic Letters, vol. 33, no.15, pp. 1302-1304, July 1997.
[9] M. Das “Improved lossless image coder based on suboptimal, adaptive multiplicative autoregressive models,” Electronic Letters, vol. 34, vo.21, pp. 2019-2021, Oct. 1998.
[10] L.G. Roberts. “Machine perception of three dimensional solids,” Optical and Electro-optical Information Processing, pp. 159-197, 1965.
[11] J.M.S. Prewitt. “Object enhancement and extraction,” Picture Processing and Psychopictorics, Academic Press, 1970.
[12] I. Sobel. “An isotropic 33 image gradient operator,” Machine Vision for Three-Dimensional Scenes, pp. 376-379, 1990.
[13] J.F. Canny. “A computational approach to edge detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, 8(6):679-698, November 1986.
[14] J. Shen and S. Castan. “An optimal linear operator for step edge detection,” Computer Vision, Graphics and Image Processing, 54(2):112-133, March 1992.
[15] R. Deriche. “Using Canny''s criteria to derive a recursively implemented optimal edge detector,” Int. Journal of Computer Vision, 1(2):167-187, 1987.
[16] Smith S.M. and Brady J.M.; “A scene segmenter; visual tracking of moving vehicles,” Engineering Applications of Artificial Intelligence, 7(2):191-204, April 1994.
[17] Z.D. Chen, R.F. Chang, and W.J. Kuo: “Adaptive Predictive Multiplicative Autogressive Model for Medical Image Compression,” IEEE Trans. on Medical Imaging, vol. 18, no. 2, pp. 181-184, Feb. 1999.
[18] D. Okkalides “Assessment of commercial compression algorithms, of the lossy DCT and lossless types, applied to diagnostic digital image files,” Computerized Medical Imaging and Graphics, 1998, 25-30.
[19] J. Kivijävi, T. Ojala, T. Kaukoranta, A. Kuba, L. Nyúl, and O. Nevalainen, “A comparison of lossless compression methods for medical images,” Computerized Medical Imaging and Graphics, 1998, 323-339.
[20] E. Pietka, and O. Ratib, “Segmentation of Chest Radiographs,” Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society, vol. 5., pp. 1911-1912, 1992
[21] J.S. DaPonte, and M.D. Fox, “Enhancement of chest radiographs with gradient operators,” IEEE Trans. on Medical Imaging, vol. 7, pp. 109-117, June 1988.
[22] J.S. Lin, S.C.B. Lo, H. Li, M.T. Freedman, and S.K. Mun , “Region-based enhancement of digital chest radiographs,” ICASSP-96, vol. 4, pp. 2211-2214, 1996.
[23] P.G. Tahoces, J. Correa, M. Souto, C. Gonzalez, L. Gomez, and J.J. Vidal, “Enhancement of chest and breast radiographs by automatic spatial filtering,” IEEE Trans. on Medical Imaging, vol. 10, pp. 330-335, Sept. 1991.
[24] Z. Yue, A. Goshtasby, and L.V. Ackerman, “Automatic Detection of Rib Borders in Chest Radiographs,” IEEE Trans. on Medical Imaging, vol. 14, pp.525-536, Sept. 1995.
[25] M.S. Brown, L.S. Wilson, B.D. Doust, R.W. Gill, and C. Sun, “Knowledge-based method for segmentation and analysis of lung boundaries in chest X-ray images,” Computerized Medical Imaging and Graphics, pp.463-477, 1998.
[26] T.R. Crimmins, “Geometric filter for Speckle Reduction,” Applied Optics, vol. 24, no. 10, May 1985.
[27] L. Ljung, and T. Soderstrom, Theory and Practice of Recursive Identification, MIT Press, Cambridge, 1983.
[28] Z. Zhang, and D. Chen, “Application of recursive least squares algorithm in digital impedance relaying,” in APSCOM, Vol. 1, pp.107-111, Nov. 1991.
[29] A. Cziho, G. Cazuguel, B. Solaiman, and C. Roux, “Medical image compression using region-of-interest vector quantization,” Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp.277 —1280, 1998.
[30] D. Nister, and C. Christopoulos, “Lossless region of interest with a naturally progressive still image coding algorithm,” Proceedings. 1998 International Conference on Image Processing, pp.856 —860, 1998.
[31] E. Atsumi, and N. Farvardin, “Lossy/lossless region-of-interest image coding based on set partitioning in hierarchical trees,” Proceedings. 1998 International Conference on Image Processing, vol.1, pp.87 —91, 1998.
[32] A. Bruckmann, and A. Uhl, “Selective medical image compression using wavelet techniques,” Journal of Computing and Information Technology, vol.6 no. 2, pp.203-213, June 1998.
[33] M.J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS,” IEEE Transactions on Image Processing, pp.1309-1324, Vol. 98, Aug. 2000.
[34] X. Wu and N. D. Memon, “Context-based, adaptive, lossless image coding,” IEEE Trans. Commun., vol. 45 (4), pp. 437-444, Apr. 1997.
[35] M. J. Weinberger, J. Rissanen, and R. Arps, “Applications of universal context modeling to lossless compression of gray-scale images,” IEEE Trans. Image Processing, vol. 5, pp. 575-586, Apr. 1996.
[36] S. W. Golomb, “Run-length encodings,” IEEE Trans. Inform. Theory, vol. IT-12, pp. 399-401, 1966.
[37] Ryoichi Kawada and Shuichi Matsumoto, “Flat Multi-Scalable Coding for Failure-Free Video Transmission,” ICIP99, pp. 110-114, 1999.
[38] ITU-T Recommendation H.263, “Video codec for low bitrate communication,” May 1996.
[39] Information Technology-Generic Coding of Moving Pictures and Associated Audio Information: Video, ISO/IEC 13818-2 (MPEG-2 Video)ITU-T H. 262, 1996.
[40] H. G. Musmann et al., "Advances in picture coding," Proc. IEEE 73, pp. 523-548, 1985.
[41] T. Koga, K. Iinuma, A. Iijima, and T. Ishiguro, “Motion-compensated interframe coding for video conderencing,” in Proc. NTC81, New Orleans, LA, pp. C9.6.1-9.6.5, 1981.
[42] R. Li, B. Zeng, and M. L. Liou, "A new three-step search algorithm for block motion estimation," IEEE Trans. Circuits Syst. Video Tech., vol. 4, pp.438-442, Aug. 1994.
[43] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast block motion estimation,” IEEE Trans. Circuits Syst. Video Tech., Vol. 6, no. 3, pp. 313-317, 1996.
[44] C. F. Chang; and J. S. Wang, "A stable buffer control strategy for MPEG coding," IEEE Trans. Circuits Syst. Video Tech., vol. 7, pp.920-924, Dec. 1994.
[45] D. P. Bertsekas, Dynamic programming: deterministic and stochastic models. Englewood Cliffs, NJ: Prentic-Hall, 1987.
[46] J.H. Lee, N.I. Lee, and S.D. Kim, “A Fast And Adaptive Method To Estimate Texture Statistics By The Spatial Gray Level Dependence Matrix For Texture Image Segmentation,” Pattern Recognition Letters (13), pp. 291-303, 1992.
[47] C. Sun, and W.G. Wee, “Neighboring Gray Level Dependence Matrix for Texture Classification,” Computer Vision Graphics and Image Processing (23), pp. 341-352, 1983.
[48] J. Mao, and A.K. Jain, “Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models,” Pattern Recognition (25), No. 2, pp. 173-188, 1992.
[49] R. Sutton, and E. L. Hall, “Texture Measures for Automatic Classification of Pulmonary Disease,” IEEE Transactions on Computers, C-21, pp. 667-676, 1972.
[50] C. C. Chen,, J. S. Daponte, and M. D. Fox, “Fractal Feature Analysis and Classification in Medical Imaging,” IEEE Transactions on Medical Imaging, 8, pp. 133-142, 1989.
[51] R. Haralick, “Statistical and Structured Approaches to Texture,” Proceedings of the IEEE, Vol.61, No.5, pp. 786-803, May 1979.
[52] W. Niblack et. al., “The QBIC project: Querying images by content using color, texture and shape”. In Symposium on Electronic Imaging Science and Technology, San Jose, CA, February 1993.
[53] R. Haralick, “Statistical and Structured Approaches to Texture”. Proceedings of the IEEE, Vol.61, No.5, pp. 786-803, May 1979.
[54] E-Liang Chen, Pau-Choo Chung, Ching-Liang Chen, Hong-Ming Tsai, and Chein-I Chang, “An Automatic Diagnostic System for CT Liver Image Classification”. IEEE Transaction On Biomedical Engineering, Vol. 45, No. 6, pp. 783-794, June 1998.
[55] E.L. Hall, R.P. Kruger, and F.A. Turner, “An optical-digital system for automatic processing of chest X-rays,” Optical Eng., vol. 13, pp. 250-257, May/June 1974.
[56] D. Gabor, “Theory of Communication,” J. IEE, vol. 93, pp.429-459, 1946.
[57] J.G. Daugman, “Two Dimensional Spectral Analysis of Cortical Receptive Field Profile,” Vision Research, vol. 20, pp.847-856, 1980.
[58] J.P. Jones and L.A. Palmer, “An Evaluation of the Two-Dimensional Gabor Filter Model of Simple Receptive Fields in the Cat Striate Cortex,” J. Neurophysiology, vol. 58, pp.1233-1258, 1987.
[59] A. C. Bovick, M. Clark, and W. S. Geisler, “Multichannel texture analysis using localized spatial filters,” IEEE Trans. Pattern Anal. Machine Intell., 12(1), January 1990.
[60] R. Wilson and G. H. Granlund, “The uncertainty principle in image processing,” IEEE Trans. Pattern And. Machine Intell., pp. 758-767, Nov. 1984.
[61] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, and P. Yanker, “Query by image and video content: The QBIC system”. IEEE Computer, pp. 23-32, September 1995.
[62] T. Sikora and B. Makai, “Shape-adaptive DCT for generic coding of video”. IEEE Trans. Circuit System for video technology, vol. 5, no. 1, pp.59-62, Feb. 1995.
[63] Teuvo Kohonen. Self-Organizing Maps. Springer-Verlag, Heidelberg, 1995.
[64] C. R. Shyu, C. E. Brodley, A. C. Kak, A. Kosaka, A. Aisen, and L. Broderick, “Local versus Global Features for Centent-Based Image Retrieval”. IEEE Workshop on Content-Based Access of Image and Video Libraries, 1998. Proceedings.
[65] C. R. Shyu, C. Brodley, A. Kak, A. Kosaka, A. Aisen, and L. Broderick, “ASSERT, A physician-in-the-loop content-based image retrieval system for HRCT image databases”, Computer Vision and Image Understanding , Vol. 75, Nos. 1/2, pp. 111-132, July/August 1999.
[66] Teuvo Kohonen, Jussi Hynninen, Jari Kangas, and Jorma Laaksonen, webpage: http://www.cis.hut.fi/research/som-research/nnrc-programs.shtml
[67] D. Hubel, and T. Wiesel, “Receptive Fields, binocular interaction and functional architecture in the cat''s visual cortex,” Journal of Physiology, Vol. 160, pp106-154, 1962.
[68] R.L. DeValois, E.W. Lund, and N. Hepler, “The orientation and direction selectivity of cells in macaque visual cortex,” Vision Research, Vol. 22, pp531-544, 1982.
[69] G. C. DeAngelis, I. Ohzawa, and R.D. Freeman, “Spatiotemporal organization of simple-cell receptive Fields in the cat''s striate cortex. I. General characteristics and postnatal1 development,” Journal of Neurophysiology, pp1091-1117, 993.
[70] H. B. Barlow, C. Blakemore, and J. D. Pettigrew, “The neural mechanism of binocular depth discrimination,” Journal of Physiology, Vol. 193, pp327-342, 1967.
[71] H. B. Barlow, “Unsupervised learning,” Neural Computation, pp295—311, 1989.
[72] D. J. Field, “What is the goal of sensory coding?” Neural Computation, 6, pp559—601, 1994.
[73] A. J. Bell, and T. J. Sejnowski, “The ‘independent components’ of natural scenes are edge filters,” Vision Research, Vol. 37, pp.3327—3338, 1997.
[74] J. H. van Hateren, and D. L. Ruderman, “Independent component analysis of natural image sequences yields spatio-temporal filters similar to simple cells in primary visual cortex,” Proceedings of the Royal Society of London B, 265, pp.2315—2320, 1998
[75] P.O. Hoyer, and A. Hyvarinen, “Feature extraction from colour and stereo images using ICA,” IJCNN 2000, Vol. 3, pp369 -374, 2000.
[76] Dharmesh R. Tailor, Leif H. Finkel, and Gershon Buchsbaum, “Color-opponent receptive fields derived from independent component analysis of natural images,” Vision Research Vol. 40, pp.2671—2676, 2000.
[77] A. Hyvarinen, P. Hoyer, and M. Inki, “Topographic ICA as a model of V1 receptive fields,” Proceedings of IJCNN, Vol. 4, pp.83-88, 2000.
[78] A. Hyvärinen and P.O. Hoyer, “Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces,” Neural Computation, 12(7):1705-1720, 2000.
[79] P.O. Hoyer and A. Hyvärinen, “Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Images,” Network: Computation in Neural Systems, 11(3):191-210, 2000.
[80] Manuel G. Penedo, Mar´ýa J. Carreira, Antonio Mosquera, and Diego Cabello, “Computer-Aided Diagnosis: A Neural-Network-Based Approach to Lung Nodule Detection,” IEEE Trans. Med. Imag., VOL. 17, NO. 6, Dec. pp. 872-880, 1998.
[81] Anthony P. Reeves, and William J. Kostis, “Computer-aided diagnosis for lung cancer,” Lung Cancer, vol. 38, no. 3, pp. 497-509, May, 2000.
[82] Toshiaka Okumura, Tomoko Miwa, Jun-ichi Kako, and Shinji Yamamoto, “Automatic detection of lung cancers in chest CT images by variable N-Quoit filter,” Proc. ICPR, vol. 2 , pp. 1671 -1673, 1998.
[83] T. Yamamoto, Y. Ukai, M. Kubo, N. Niki, H. Satou, and K. Eguchi, “Computer aided diagnosis system with functions to assist comparative reading for lung cancer based on helical CT image,” Proc. ICIP, vol. 1, pp.180-183, 2000.
[84] T. Matsumoto, H. Yoshimura, K. Doi, M. L. Giger, A. Kano, H. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagation errors,” Nature, vol. 323, pp. 533—536, 1986.
[85] V. Vapnik. The Nature of Statistical Learning Theory. Springer Verlag, New York, 1995.
[86] C. Cortes and V. Vapnik, “Support vector networks,” Machine Learning, vol. 20, pp. 273-297, 1995.
[87] B. Scöhlkopf, C. Burges, and V. Vapnik, “Extracting support data for a given task,” In First International Conference on Knowledge Discovery & Data Mining. AAAI Press, Menlo Park, CA, 1995.
[88] B. Schölkopf, C. Burges, and V. Vapnik, “Incorporating invariances in support vector learning machines,” ICANN''96, pp. 47-52, Berlin, 1996.
[89] C. J. C. Burges and B. Sch.olkopf, “Improving the accuracy and speed of support vector learning machines,” Advances in Neural Information Processing Systems 9, pp. 375-381, Cambridge, MA, MIT Press, 1997.
[90] V. Blanz, B. Schölkopf, H. B. ultho, C. Burges, V. Vapnik, and T. Vetter. “Comparison of view-based object recognition algorithms using realistic 3d models,” ICANN''96, pp. 251-256, Berlin, 1996.
[91] T. Joachims, “Estimating the Generalization Performance of a SVM Efficiently’” Proceedings of the International Conference on Machine Learning, Morgan Kaufman, 2000.
[92] G. C. Cawley, Support Vector Machine Toolbox, url: http://theoval.sys.uea.ac.uk/ ~gcc/svm/toolbox, 2000.
[93] J. C. Platt, “Fast training of support vector machines using sequential minimal optimization”, in Advances in Kernel Methods - Support Vector Learning, (Eds) B. Scholkopf, C. Burges, and A. J. Smola, MIT Press, Cambridge, Massachusetts, chapter 12, pp 185-208, 1999.
[94] S. K. Shevade, S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, “Improvements to the SMO Algorithm for SVM Regression,” IEEE Trans. Neural Networks, vol. 11, no. 5, Sep. 2000.
[95] Kak and Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, NY, pp. 92-93, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top