|
[1] T. Itoh and S. Tsujii, “Structure of parallel multipliers for a class of fields GF(2m),” Information and Computation, vol. 83, pp. 21-40, 1989. [2] C.K. Koc and B. Sunar, “Low complexity bit-parallel canonical and normal basis multipliers for a class of finite fields,” IEEE trans. on computers, vol. 47, no. 3, pp. 353-356, 1998. [3] H. Wu, M. A. Hasan, and Lan F. Blake, “New low-complexity bit-parallel finite field multipliers using weakly dual bases,” IEEE trans. on computers, vol. 47, no. 11, pp. 1223-1234, 1998. [4] B.A. Laws, Jr, and C.K. Rushforth, “A cellular-array multiplier for GF(2m),” IEEE trans. on computers, vol. C-20 , pp. 1573-1578,1971. [5] C. C. Wang and D. Pei, “A VLSI design for computing exponentiations in GF(2m) and its application to generate pseudorandom number sequences,” IEEE trans. on computers, vol. C-39, pp. 258-262, Feb. 1990. [6] Shyue-Win Wei, “A systolic power-sum circuit for GF(2m),” IEEE trans. on computers, vol. 43, no. 2, pp. 226~229, 1994. [7] Shyue-Win Wei, “VLSI architectures for computing exponentiations, multiplicative inverses, and divisions in GF(2m),” IEEE trans. on circuits and systems-II, vol. 44, no. 10, pp.847-855, Oct. 1997. [8] Jiri Adamek, “Foundations of Coding: theory and application of error-correcting codes, with an introduction to cryptography and information theory,” John Wiley & Sons, 1991. [9] C. C. Wang, T. K. Truong, H. M. Shao, L. J. Dentsh, J. K. Omura, and I. S. Reed, “VLSI architectures for computing multiplications and inverses in GF(2m),” IEEE trans. on computers, vol. C-34, pp.709-716, 1985. [10] C. L. Wang and J. L. Lin, “A systolic architectures for computing inverses and divisions in finite fields GF(2m),” IEEE trans. on computers, vol. 42, pp.1010-1015, 1993. [11] P. A. Scott, S. J. Simmons, S. E. Tavares, and L. E. Peppard. “Architectures for exponentiation in GF(2m),” IEEE J. Select. Areas commun., vol.6, no.3, pp. 578-586, 1988. [12] Shyue-Win Wei, “VLSI Architectures for Computing Exponentiations, Multiplicative Inverses, and Divisions in GF(2m),” IEEE Trans. Circuits and Systems II: Analog and Digital Processing, vol. 44, pp. 845-855, Oct. 1997. [13] S. R. Whitaker, J. A. Canaris, and K. B. Cameron, “Reed Solomon VLSI Cosdec for advanced television,” IEEE Trans. Circuit Syst. Video Technol., vol. 1, pp. 230-236, June 1991. [14] S. W. Wei and C. H. Wei, “A high-speed real-time binary BCH decoder,” IEEE Trans. Circuit Syst. Video Technol. vol. 3, pp. 138-147, June 1993. [15] S. Y. Kung, VLSI Array Processors. Englewood Cliffs, NJ: Prentice-Hall, 1988. [16] L. A. Glasser and D. W. Dobberuhl, The Design and Analysis of VLSI Circuits. Reading, MA: Addison-Wesley, 1985. [17] T. R. N. Rao and E. Fujiwara, Error-Control Coding for Computer Systems. Eaglewood Cliffs, NJ: Prentice-Hall, 1989. [18] A. M. Michelson and A. H. Levesqu, Error-Control Techniques for Digital Communicaion. New York: Wiley, 1985. [19] R. E. Blahut, Theory and Practice of Error Control Codes. Reading, MA: Addison-Wesley, 1983. [20] W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes, Jr., Cambridge, MA: The MIT Press, 1972. [21] S. Lin and D. J. Costellor, Jr., Error Control Coding. Englewood Cliffes, NJ: Prentice-Hall, 1983. [22] E. R. Berlekamp, Algebraic Coding Theory, revised ed. Laguna Hills, CA: Aegean Park, 1984. [23] Jyh-Huei Guo and Chin-Liang Wang, “A Low Time-Complexity, Hardware-efficient bit-parallel power-sum circuit for finite fields GF(2m),” IEEE International Symposium on Circuit and Systems 1999 (ISCAS’99), vol. 1, pp.521-524. [24] D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 1995. [25] B. Schneier, Applied Cryptography, New-York: Wiley, 1996. [26] C.-S. Yeh, I.S.Reed, and T.K.Truong, “Systolic multipliers for finite field GF(2m),” IEEE Trans. Comput., vol. C-33, pp. 357-360, 1984. [27] C.-L. Wang and J.-H. Guo, “New systolic arrays for C+AB2, inversion, and division in GF(2m),” in Proc. 1995 European Conference Circuit Theory Design (ECCTD’95), Istanbul, Turkey, Aug. 1995, pp. 431-434. [28] Jyh-Huei Guo and Chin-Liang Wang, “A new systolic architecture for fast exponentiation in GF(2m),” in Proc. 1995 Int. Sym. Communications (ISCOM), Taipei, Taiwan, Dec. 1995, pp.521-524. [29] R. Furness, M. Benaissa, S.T.J. Fenn, “Circuit architectures for semi-bit-serial and programmable arithmetic in finite fields,” 1998 IEEE International Conference on Electronics, Circuits and Systems, vol. 3, 1998, pp. 415-418. [30] J. L. Massey and J. K. Omra, “Computational method and application for finite field arithmetic,”U.S. Patent Application, submitted 1981. [31] E. R. Belekamp, “Bit-serial Reed-Solomon encoders,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 869-874, 1982. [32] M. A. Hasan and V. K. Bhagava, “Division and bit-serial multiplication over GF(qm),” IEE Proceedings-E, vol. 139, no. 3, pp. 230-236, May 1992. [33] C. Paar, “A new architecture for a parallel finite field multiplier with low complexity based on composite fields,” IEEE Trans. Computers, vol. 45, o.7, pp. 856-861, July 1996. [34] Michael Orchard, “Fast bit-reversal algorithms based on index representations in GF(2b),” IEEE International Symposium on Circuits and Systems, vol.3, 1989, pp. 1903-1906) [35] R. Lidl and H. Niederreiter, Finite Fields. Reading, Mass.: Addison-Wesley, 1983. [36] I. S. Hsu, T. K. Truong, L. J. Deutsch, and J. S. Reed “A Comparison of VLSI Architecture of Finite Fields Multipliers Using Dual, Normal, or Standard Bases,” IEEE Trans. Computers, vol. 37, no. 6, pp. 735-739, June 1988. [37] R.Barua, S.Sengupta, “Architectures for arithmetic over GF(2m),” VLSI Design, 1997. Proceedings., Tenth International Conference on , 1997, pp. 465-468. [38] M.A. Hasan, M. Z. Wang, and V.K. Bhargava, “Modular construction of low complexity parallel multipliers for a class of finite fields GF(2m),” IEEE trans. on computers, vol. C-41, pp. 962-971, Aug. 1992. [39] M.A. Hasan, M. Z. Wang, and V.K. Bhargava, “A modified Massey-Omura multiplier for a class of finite fields,” IEEE trans. on computers, vol. 42, no. 10, pp. 1278-1280, Oct. 1993. [40] P. K. S. Wah and M. Z. Wang, “Realization and application of the Massey-omura lock,” presented at the Int. Zurich Semp., 1984. [41] W. Drescher and G. Fettweis, “VLSI Architectures for Multiplication in GF(2m) for Application Tailored Digital Signal Processors,” IEEE VLSI Signal Processing, IX, 1996, pp.55-64. [42] H. M. Shao and I. S. Reed, “On the VLSI design of a pipeline Reed-Solomon decoder using systolic arrays,” IEEE Trans. Comput., vol. C-37, pp. 1273-1280, 1988. [43] S. K. Jain, L. Song, and K. K. Parhi, “Efficient Semi-Systolic Architectures for Finite Field Arithmetic, ” IEEE Trans. On VLSI Systems, vol. 6, no. 1, pp. 101-113, March 1998. [44] M.Pontas, “Algorithm for squaring in GF(2m) in standard basis,” Electronics Letters, 31st August 1989 vol. 25, no. 18, pp. 1262-1263 [45] A. J. Menezes, ed, Applications of Finite Fields. Boston: Kluwer Academic, 1993. [46] H.Y.H Chuang, and G. He, “Design of problem-size independent systolic arrays systems,” Proc. IEEE Int. Conf. ICCD’84, Port Chester, New York, USA, 152-156, 1984. [47] Shyue-Win Wei, “Power-sum circuit for finite fields GF(2m),” United States Patent, Patent Number: 5,931,894, Aug. 3, 1999. [48] A. M. Odlyzko, “Discrete logarithms in finite fields and their cryptographic significance,” in Adv. Cryptol., Proc. Eurocrypt '84, Paris, France, April 1984, pp.224-314. [49] D.E. Knuth, “The Art of Computer Programming,” vol. 2, Seminumerical Algorithms, Reading, MA: Addison-Wesley, 1969. [50] Chin-Liang Wang, “A Systolic Exponentiator for finite fields GF(2m),” Proceedings of the 34th Midwest Symposium on Circuits and Systems, 1992, pp. 279-282 vol.1 [51] H. T. Kung and M. Lam, “Fault tolerance and two level pipelining in VLSI systolic arrays,” in Proc. MIT Conf. Advanced Res. VLSI, Cambridge, MA, Jan. 1984, pp.74-83. [52] P. A. Scott, S. E. Tavares, and L. E. Peppard. “A fast VLSI multiplier for GF(2m),” IEEE J. Select. Areas commun., vol. SAC-4, pp. 62-66, Jan. 1986. [55] -, “Division and bit-serial multiplication over GF(2m),” IEE Proc. -E, vol. 139, pp. 230-236, May 1992. [53] G. K. Maki, K. B. Gameron, and P. A. Owsley, “High-speed real-time Ree-Solomon decoder,” U.S. Patent 487 368 3, Oct. 1989. [54] K. Araki, I. Fujita, and M. Morisue, “Fast inverter over finite field based on Euclid’s algorithm,” Tans. IEICE, vol. E-72, pp. 1230-1234, Nov. 1989. [56] D. E. R. Denning, Cryptography and Data Security, Reading, MA: Addison-Wesley, 1983. [57] Yuh-Tsuen Horng and Shyue-Win Wei, “Fast Inverters and Dividers for Finite Field GF(2m)”, 1994 IEEE Asia-Pacific Conference on Circuits and Systems (APCCAS), 1994, pp. 206-211. [58] H. Brunner, A. Curiger, and M. Hofstetter, “On computing multiplicative inverses in GF(2m), ” IEEE Trans. Comput., vol. 42, no. 8, pp. 1010-1015, Aug. 1993. [59] G. I. Davida., “Inverse of elements of a Galois field, ” Electron. Lett., vol. 8, pp. 518-520, Oct. 1972.
|