跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/04 20:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王嘉宏
研究生(外文):Cha-Han Wang
論文名稱:銀銦銻碲材質相變化光碟覆寫率與穩定度之研究
論文名稱(外文):Study on cyclability and Stability of Ag-In-Sb-Te material base phase change disc
指導教授:黃惠良黃惠良引用關係
指導教授(外文):Prof. Huey-Liang Hwang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:43
中文關鍵詞:銀銦銻碲覆寫率
外文關鍵詞:Ag-In-Sb-Tecyclability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:176
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於相變光碟的可覆寫性、方便性、高儲存容量、以及其大量生產後的低價位,顯然已成為全球高儲存媒介的主流。又近年來DVD發展速度加快,高儲存密度已成為相變光碟的一個主要的方向。所以舊有的Ge-Sb-Te材料系統已無法滿足目前相變光碟的發展趨勢,這也是我們採用Ag-In-Sb-Te材料系統的主要原因。
然而Ag-In-Sb-Te材料系統被發現,其覆寫率僅有103 次明顯的較舊系統少了三個order。文獻中提出許多造成Ag-In-Sb-Te材料覆寫次數無法提高之原因,而我們針對在多次覆寫後,Te獨自相偏析出來的這個原因來改善。我們試著使用文獻中所提供的方式,在濺渡Ag-In-Sb-Te靶材時通入N2 ,使N與Te鍵結而形成Te-N bond,利用Te-N bond的束縛力使得Te難以獨自相偏析出,而達到我們所要求的目標。
更進一步的,我們不利用濺渡機內的RF Power來解離N2,而直接在Chamber外,就利用外加的Microwave將N2直接解離成為N原子,以增進Te與N之間鍵結的機會與效率。
我們利用DSC的結果配合 Kissinger equation 証明了加入Microwave 後使得記錄層的活化能增加約0.3~0.6 eV,以及利用相同厚度的FTIR吸收度結果來引証Te-N鍵的增加。於覆寫率的部份,我們也以四層結構為ZnS:SiO2 100nm / Ag-In-Sb-Te 200nm / ZnS:SiO2 180nm/ Al-Cr 100nm 的碟片來做動態測試, 也得到了Microwave 的方式較RF的方式高3倍覆寫率的結果。

Base on the repeatable、convenient、high storage capacity,and the low cost cause of the mass mass production,the phase change optic disc already become the major high storage capacity media, obviously. And recently, the DVD system was developed very fast,the high storage density was the major trend of the phase change optic disc.
The Ge-Sb-Te material system can’t follow this trend, this is also why we choose the Ag-In-Sb-Te material system.
But the Ag-In-Sb-Te material system was found the cyclability only have 103 times, evident that this system’s cyclability is lower than former system’s. According to literatures, the reason of cyclability can’t be promoted were very mush, and we aimed at the phase segregation of Te, to study how the improve this problem. We try to used the way whose address in literatures, when sputtering the Ag-In-Sb-Te target mixed the nitrogen gas, promoted the Te and N bond together. The fetter force would confine Te not to segregated self, to achieve our purpose.
More advance, we didn’t use the RF power in Sputter chamber to decompose nitrogen, we decompose the nitrogen molecule directly by microwave outside the chamber, attempt to decompose the nitrogen molecule become atomic nitrogen to promote the bonding probability and it’s efficiency.
We using the results of DSC analysis to operated by Kissinger equation to prove the method of Microwave enhance N2 atoms increase the activation energy of recroding layer approximately 0.3~0.6 eV, and the Absorbance results of FTIR measure to prove the Te-N bond increase. In cyclability, a four layer structure of the phase chage disc used in the analysis is polycarbonate substrate / ZnS:SiO2 100nm / Ag-In-Sb-Te 200nm / ZnS:SiO2 180nm/ Al-Cr 100nm. The results of the disc dynamic test also observe our Microwave enhance N2 atoms method was 3times than the RF enhance N2 molecule method at cyclability.

Abstract ( Chinese )
Abstract ( English )
Acknowledgement
Table of Contents Figures List
Tables List
Ⅰ. Introduction
1.1 Standard specifications of the compact disc
1.2 Standard specifications of the DVD
1.3 Compare with CD and DVD
1.4 Future phase change disc — HD-DVD
Ⅱ. Principles of phase change optical recording
2.1 The construct of Phase change
2.2 Development of phase change material
2.3 The phase change disc
2.4 Mechanism of phase change optical data storage
2.5 The summary of phase change process on Ag-In-Sb-Te material
Ⅲ. Some theories of the low cyclability of Ag-In-Sb-Te material
3.1 Sulfur diffusion.
3.2 Material flow
3.3 Te Segregation
3.4 Motivation
Ⅳ. Experiment
4.1 Experimental flow chart
4.2 Single layer growth
4.3 Thin film growth
4.4 Experimental equipment
Ⅴ. Results and Discussion
5.1 Compositional analysis
5.2 XRD analysis
5.3 Thermal analysis
5.4 FTIR analysis
5.5 Disk dynamic test
Ⅵ. Conclusions
Reference

Reference:
1.探討CD的標準規格與規範, 芳容, 2000/3/14
http://jing.ctas.tcc.edu.tw/sub/subject/general/general08.htm
2.錸德網頁,技術情報
http://www.ritek.com.tw/ritek_c/tech/topic01/topic01.htm
3.Run!PC 2000 jan, page71.
4.S. R. Ovinshinsky, Phys. Rev. Lett. 21, 1450 ( 1968 ).
5.J Feinleib, J.Deneufville, S. C. Moss, and S. R. Ovshinsky, Appl. Phys. Lett. 18, 254 ( 1971 ).
6.清華大學碩士論文, M/448.6/2000.
7.交通大學博士論文, D NCTU ELOEG 1998 pt.10.
8.N. Akahira, N. Yamada, K. Kimura, and M. Takao, Proc . SPIE 899, 188 (1988 ).
9.H. Iwasaki, Y.Ide, M.Harigaya, Y.Kageyama and I. Fujimura. Jpn. J .Appl. Phhys 31 ( 1992 ) 461.
10.Y. Sato, H/ Minemura, Yoshihito, I. Ikuta, H. Andoh, N. Tsuboi and M. Nagai, Proc. SPIE vol 1316 ( 1990 ) pp267.
11.T. Ohta, K. Inoue, T. Akiyama and K. Yoshioka Proc SPIE vol 1663 ( 1992 ) pp436.
12.R. Chiba, H. Yamazai, S. Yagi, and S. Fujimori, Jpn. J. Appl. Phys. 32,834 (1993 ).
13.M. Terada, K . Furuya, T. Okamura, I. Morimoto and Nako, Jpn. J. Appl. Phys vol 32 ( 1993 ) pp5219.
14.N. Yamada, M. Otoba, K. Kawahara, Jpn. J. Appl. Phy vol 37 ( 1998 ) pp 2104-2110.
15.United States Patent #5,785,828 , Ide et al.
16.United States Patent #5,736,657 , Ide et al.
17.清華大學碩士論文, M 330.37, 1999.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top