跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧永斌
研究生(外文):Yung-Pin Lu
論文名稱:錯誤配對修補基因變異參與台灣地區肺癌形成之機制
論文名稱(外文):Genetic Alterations of Mismatch Repair Genes in Lung Tumorigenesis in Taiwan
指導教授:王憶卿
指導教授(外文):Yi ching Wang
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:生物研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:89
中文關鍵詞:肺癌錯誤配對修補基因hMLH1hMSH2微衛星不穩定性啟動子甲基化台灣DNARNAProtein
外文關鍵詞:Lung cancermismatch repair geneshMLH1hMSH2microsatellite instabilitypromoter hypermethylationTaiwanDNARNAProtein
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
壹、中文摘要
肺癌是台灣地區男性及女性癌症死亡原因的首位,但流行病學資料顯示國人吸煙的人口比例卻顯著與西方國家不同,因此先天遺傳敏感性與香菸以外的環境因素,可能是造成台灣地區肺癌形成的原因。由於本研究室在先前的實驗中證實,台灣肺癌形成的過程中常伴隨著基因不穩定的現象。利用微衛星不穩定(microsatellite instability, MI)即可偵測到基因不穩定的現象,而造成MI的原因有可能是DNA進行複製時聚合酵素發生問題;或者是DNA在複製錯誤後,錯誤配對修補基因 (mismatch repair gene) 功能上有問題,無法將有錯誤的鹼基配對修補,因此造成一連串功能基因的異常。所以本研究分析了兩個主要的配對修補基因hMLH1和hMSH2,分別對其蛋白質表達的情形、mRNA表達的情形、hMLH1啟動子甲基化的情形、還有異質性缺失 (loss of heterozygosity;LOH) 做偵測,並探討其形成的可能機制,另外也一併進行與病理資料、其他分子證據如微衛星不穩定性 (MI) 做相關性的探討。
蛋白質方面,採用免疫組織染色法(immunohistochemistry)針對錯誤修補系統(mismatch repair system, MMR)之hMLH1、hMSH2 蛋白表現進行分析,發現有高達56.8% (96/196) 的病人其hMLH1 蛋白有不表達的情形、而hMSH2蛋白僅有17.1% (13/76) 不表達。mRNA方面,以RT-PCR分析其mRNA的表達情形,發現在hMLH1 mRNA方面亦有55.8% (43/77) 的高比例病人不表達、hMSH2 mRNA則為15.6% (12/77) 不表達;hMLH1 和hMSH2 其mRNA與蛋白質表達有相當高的一致性 (hMLH1 , P=0.001;hMSH2 , P=0.001)。
本實驗進一步探討,蛋白質的不表現、mRNA的不表達的可能原因。在DNA層次方面,若在基因啟動子序列部分有高度甲基化的情形,常會導致轉錄因子和RNA 聚合酵素無法結合到啟動子的位置,轉錄 (Transcription) 就無法進行,mRNA就無法合成。因此,本研究進一步的分析hMLH1蛋白、mRNA不表達是否是因為hMLH1的啟動子過度甲基化所致。結果顯示hMLH1啟動子高度甲基化的病人中,其hMLH1蛋白沒有表達的比例高達73.8% (45/61);hMLH1啟動子高度甲基化的病人中,hMLH1 mRNA 不表達的比例82.4% (28/34)。顯示了,hMLH1蛋白不表達的原因可能是其啟動子高度甲基化進而導致mRNA不表達所致 (P=0.001),也顯示了在台灣地區非小細胞肺癌的形成機制中,錯誤配對修補基因hMLH1啟動子高度甲基化,扮演了的角色是不容忽視的。另外,本實驗也使用基因座缺失(loss of heterozygosity, LOH)的分析方法,針對hMLH1所在的染色體區位3p21的微衛星序列 D3S1768,進行LOH的分析,發現其中有高達56.4% (22/39) 的病人其hMLH1所在的染色體區位有LOH的情形產生;研究結果亦指出,在hMLH1基因的位置,同時有LOH和啟動子高度甲基化的病人,有50% (8/16) 的比例,顯示了LOH和啟動子高度甲基化,對hMLH1蛋白質表達異常有一定的影響力。
接著,進一步偵測hMLH1蛋白表現和抑癌基因 (tumor suppressor genes) 的不表現如p16蛋白、pRb蛋白等和p53基因的突變情形的相關性,以探討hMLH1扮演致變子 (mutator) 的可能性;初步發現,hMLH1蛋白變異與其他檢測的基因變異並無明顯相關。在hMLH1基因或蛋白質變異與微衛星不穩定性 (MI) 的分析方面,在微衛星不穩定的病人中其hMLH1蛋白不表達的比例高達73% (27/37)。顯示hMLH1蛋白質不表達,很可能是導致微衛星不穩定的主要原因之一 (P=0.025);另外,微衛星不穩定性的病人也可能和異質性缺失有一定程度的相關性 (P=0.092),至於其他分析資料,可惜因人數過少,未達統計上的意義。
由本研究結果可推測:錯誤配對修補基因hMLH1之變異可能參與台灣地區肺癌之形成,並導致微衛星不穩定性;hMLH1變異機制主要是因為啟動子高度甲基化導致mRNA不表達,進一步致使蛋白質也不表達;另外,異質性缺失 (LOH) 可能也是另一變異機制。並由hMLH1、hMSH2兩錯誤配對修補基因的異常表達情形比較可知,可能hMSH2在台灣肺癌形成機制中僅佔一較次要的角色。而其他本研究未探討的錯誤配對修補基因啟動子高度甲基化和異質性缺失現象研究,在未來皆是很值得深入探討的主題。

貳、英文摘要
Lung cancer is the leading cause of cancer deaths in Taiwan. Genetically determined variation in DNA repair capacity is thought to contribute to susceptibility to tobacco-related cancers, such as lung cancer. In addition, defects in mismatch repair (MMR) genes have been implied in several types of sporadic and hereditary cancers in terms of inducing microsatellite instability (MI) of tumor cells. We have previously found that MI occurs in 41% of non-small cell lung cancer patients (NSCLC). However, there was only little report discussing the MMR gene alteration in lung cancer.
In order to elucidate the role of MMR in human lung carcinogenesis in Taiwan, we examined the alteration of two DNA mismatch repair genes, hMLH1 and hMSH2, in primary lung tumor tissues from NSCLC patients. We investigated the expression levels of hMLH1 and hMSH2 proteins in 169 and 77 NSCLC tumors , respectively, by the immunohistochemical analysis. Ninety-six (56.8%) patients had the alteration of hMLH1 protein expression; thirteen patients (17.1%) had the alteration of hMSH2 protein expression. In addtion, we found that the alteration of protein expression correlated with the aberrant mRNA expression by RT-PCR assay for both hMLH1 and hMSH2 (P=0.001). The alteration frequencies of mRNA expression were 55.8% and 15.6% for hMLH1 gene and hMSH2 gene, respectively.
To further examine the role of promoter hypermethylation in the identified alteration of protein expression, we also examine the association between hMLH1 promoter hypermathylation and hMLH1 protein expression. Forty-five (73.8%) patients containing hMLH1 promoter hypermethylation showed the alteration of protein expression (P = 0.001). The results suggested that mismatch repair plays a significant role in NSCLC tumorigenesis in Taiwan and that hMLH1 promoter hypermethylation is closely relative to the altered expression of mRNA and protein in the hMLH1 mismatch repair gene. Furthermore, we conducted a loss of heterozygosity (LOH) analysis at 3p21 microsatellite polymorphic marker D3S1768 for the deletion of hMLH1 region in a series of 39 NSCLC patients. The high percentage of LOH (56.4%) was observed at the D3S1768. The result suggested that loss of chromosome 3p21 may be also a critical event in the pathogenesis of lung cancer in Taiwan.
To investigate the association of hMLH1 alteration with MI, we also studied the correlation between MI and expression of hMLH1 mismatch repair protein in 73 patients. Twenty-seven of 37 MI-positive patients (73.0%) did not express hMLH1 protein. The data showed that MI was associated with altered hMLH1 expression (P=0.025). In addition, there was a tendency of association between LOH at D3S1768 (3p21) region and MI (P=0.092). The correlation suggests the alteration of the hMLH1 gene/ protein may be associated with microsatellite instability (MI) because of the failure to correct replication slippage errors.
In conclusion, our data suggest that alteration of hMLH1 gene and/or protein involved in lung tumorigenesis in Taiwan. The major alteration mechanism may be the promoter methylation of hMLH1 gene, and therefore inactivating its mRNA and protein expression. Moreover, LOH of the hMLH1 gene can also play an important role in alteration of hMLH1 gene. As regards hMSH2 gene, the data indicated that hMSH2 does not play a major etiological role in lung tumorigenesis in Taiwan. Validating the promoter hypermethyaltion and LOH in other mismatch rapair genes are worthy of further investigation in lung cancer tumorigenesis in Taiwan.

目 錄
錯誤配對修補基因變異
參與台灣地區肺癌形成之機制
Genetic Alterations of Mismatch Repair Genes
in Lung Tumorigenesis in Taiwan
壹、中文摘要 -------------------------------------------------------1
貳、英文摘要 -------------------------------------------------------4
參、文獻總論 -------------------------------------------------------6
一、引言 -------------------------------------------------------6
二、肺癌的分類及檢體種類--------------------------------9
三、基因不穩定與肺癌之關係---------------------------------9
四、錯誤配對修補機制與癌症形成的關係---------------12
五、何謂啟動子高度甲基化 (Promoter
Hypermethylation) 及其影響---------------------------16
六、何謂異質性缺失
(loss of heterozygosity, LOH)--------------------------18
肆、研究目標 -----------------------------------------------------21
一、偵測並探討錯誤配對修補基因hMLH1、hMSH2其蛋白質表達情形參與台灣地區非小細胞肺癌 (NSCLC) 形成之機制-------------------------------21
二、偵測並探討錯誤配對修補基因hMLH1、hMSH2其mRNA表達情形參與台灣地區非小細胞肺癌 (NSCLC) 形成機制的情形-------------------------21
三、研究台灣地區非小細胞肺癌病人中錯誤配對修補基因hMLH1其啟動子高度甲基化(Promoter Hypermethylation)的情形---------------------------22
四、探討錯誤配對修補基因hMLH1表達與否與異質性缺失 (LOH) 的情------------------------------------23
五、探討hMLH1蛋白質表達程度、mRNA 表達情形、啟動子高度甲基化狀態 (Promoter Hypermethylation) 異質性缺失 (LOH) 與微衛星序列不穩定 (MI) 間在參與台灣地區非小細
胞肺癌 (NSCLC) 形成機制的相關性--------------23
伍、方法總論 ------------------------------------------------------25
一、檢體來源及病例資料 --------------------------------25
(1)、本研究檢體來源 ---------------------------------25
(2)、LOH分析用檢體來源 ---------------------------26
二、外科切除組織塊之保存 -------------------------------27
(1)、液態氮保存 ----------------------------------------------27
(2)、.臘塊保存 -------------------------------------------------27
三、DNA之製備 ----------------------------------------------28
(1)、啟動子高度甲基化 (Promoter methylation)、
微衛星不穩定性 (MI) 分析用-----------------28
(2)、LOH分析用 --------------------------------------28
四、hMLH1 & hMSH2蛋白表現之分析-----------------30
(1)、免疫組織化學染色分析
( Immunohistochemistry , IHC) ------------------30
(2)、染色切片的判讀標準 --------------------------31
五、RNA & cDNA之製備----------------------------------32
六、hMLH1 & hMSH2 RNA 表現程度之分析---------32
(1)、聚合鍊連鎖反應 ( Polymerase chain reaction, PCR ) ------------------------------------------------33
(2)、mRNA表現之分析--------------------------------34
七、hMLH1啟動子甲基化 (Promoter methylation)
程度分析-------------------------------------------------35
八、LOH分析-------------------------------------------------37
九、MI分析 --------------------------------------------------38
十、統計分析 ------------------------------------------------39
陸、結 果 ---------------------------------------------------------41
一、探討台灣地區非小細胞肺癌病人(NSCLC)其hMLH1蛋白的表現情形與mRNA表現程度、啟動子高度甲基化 (promoter hypermethylation)、異質性缺失(LOH)、肺癌病人病理分類、預後及微衛星不穩定性(MI)、、其他抑癌基因變異之相關性 -------------41
(一)、探討台灣地區非小細胞肺癌病人其hMLH1蛋白的表現情形---------------------------------41
(二)、探討台灣地區非小細胞肺癌病人其hMLH1的蛋白異常表現與病理資料的相關性---------42
(三)、探討台灣地區非小細胞肺癌病人其hMLH1的蛋白表達情形和mRNA表達情形的相關性 ------------------------------------------------------43
(四)、探討台灣地區非小細胞肺癌病人其hMLH1的蛋白異常表現與其啟動子高度甲基化的相關性 ---------------------------------------------------43
(五). 探討台灣地區非小細胞肺癌病人其hMLH1的蛋白異常表現與其異質性缺失(LOH)
的相關性 ------------------------------------------43
(六)、探討台灣地區非小細胞肺癌病人其hMLH1蛋白異常表現與微衛星不穩定的關係性 ------44
(七)、探討台灣地區非小細胞肺癌病人其hMLH1
的蛋白異常表現與其他抑癌基因 (p53、p16 and pRb) 異常的相關性 ------------------------44
(八). 探討台灣地區非小細胞肺癌病人其hMLH1的蛋白異常表現與預後的相關性 ---------------45
二、探討台灣地區非小細胞肺癌病人(NSCLC)其hMLH1 mRNA的表現情形與啟動子高度甲基化程度、肺癌病人病理分類之相關性--------------------------------46
(一)、探討台灣地區非小細胞肺癌病人其hMLH1 mRNA的表達情形 -----------------------------46
(二)、探討台灣地區非小細胞肺癌病人其hMLH1的mRNA異常表現與病理資料的相關性--------46
(三)、探討台灣地區非小細胞肺癌病人其
hMLH1 mRNA不表現與其蛋白質不表現
及啟動子高度甲基化程度的相關性---------47
三. 探討台灣地區非小細胞肺癌病人(NSCLC)其hMLH1啟動子高度甲基化程度與肺癌病人病理分類、微衛
星不穩定性(MI)、和異質性缺失(LOH)之相
關性 ---------------------------------------------------------48
(一)、探討台灣地區非小細胞肺癌病人其hMLH1
啟動子高度甲基化的程度比例-----------------48
(二)、探討台灣地區非小細胞肺癌病人其hMLH1
啟動子高度甲基化程度與病理資料的相關性--------------------------------------------------------48
(三)、探討台灣地區非小細胞肺癌病人其hMLH1
啟動子高度甲基化與其異質性缺失 (LOH) 的相關性 ---------------------------------------------49
(四)、探討台灣地區非小細胞肺癌病人其hMLH1
啟動子高度甲基化與微衛星不穩定的關係性 --------------------------------------------------------50
四、探討台灣地區非小細胞肺癌病人(NSCLC)其hMLH1 LOH情形與肺癌病人病理分類、微衛星不穩定性之相關性 ----------------------------------------------------51
(一)、探討台灣地區非小細胞肺癌病人其hMLH1 LOH的情形 -------------------------------------51
(二)、探討台灣地區非小細胞肺癌病人其hMLH1 LOH異常與病理資料的相關性 -------------52
(三)、探討台灣地區非小細胞肺癌病人其hMLH1 LOH與微衛星不穩定的關係性 ---------------52
五、探討台灣地區非小細胞肺癌病人(NSCLC)其
hMSH2蛋白的表現情形與mRNA表現程度、
肺癌病人病理分類之相關性 -------------------------53
(一)、探討台灣地區非小細胞肺癌病人其hMSH2蛋白的表現情形--------------------------------------53
(二)、探討台灣地區非小細胞肺癌病人其hMSH2的蛋白異常表現與病理資料的相關性-----------53
(三)、探討台灣地區非小細胞肺癌病人其hMSH2
的蛋白表達情形和mRNA表達情形的一致性 --------------------------------------------------------54
六、探討台灣地區非小細胞肺癌病人(NSCLC)其hMSH2 mRNA的表現情形與肺癌病人病理分類之相關性 --------------------------------------------------------------54
(一)、探討台灣地區非小細胞肺癌病人其hMSH2 mRNA的表達情形------------------------------54
(二)、探討台灣地區非小細胞肺癌病人其hMSH2的mRNA異常表現與病理資料的相關性 ------------------------------------------------------55
柒、討 論 -----------------------------------------------------------56
一、探討hMLH1 基因/蛋白變異參與台灣地區非小細胞肺癌(NSCLC)的形成與其機制----------------56
二、探討hMLH2 基因/蛋白變異參與台灣地區非小細胞肺癌(NSCLC)的形成及其機制-----------------63
三、研究應用與未來工作 ----------------------------------65
捌、參考文獻 -----------------------------------------------------66
玖、圖 表 -----------------------------------------------------------75
圖 目 錄
圖一 Figure. 1 Representative figures of immunohistochemical analysis of hMLH1 protein ----------------------------75
圖二 Figure 2. Representative figures of immunohistochemical analysis of hMSH2 protein ----------------------------76
圖三 Figure 3. The Kaplan-Meier survival curves with respect to hMLH1 protein expression.---------------------------77
圖四 Figure 4. Representative figures of hMLH1 and hMSH2 mRNA expression analysis.-------------------------------------78
圖五 Figure 5. Representative figures of promoter hypermethylation analysis of hMLH1 gene in normal lung tissue------------------------------------------------------79
圖六 Figure 6. Representative figures of promoter hypermethylation analysis of hMLH1 gene in tumor lung tissue------------------------------------------------------80
圖七Figure 7. Representative figures of LOH analysis of chromosome 3p21 using the D3S1768 microsatellite sequence ------------------------------------------------------------81
表 目 錄
表一 Table 1 Clinical features of hMLH1 protein expression
-positive and-negative patients--------------------82
表二 Table 2 hMLH1 protein expression in relation to genetic alterative factors------------------------------------------83
表三 Table 3 Clinical features of hMLH1 mRNA expression
-positive and-negative patients -----------------------84
表四 Table 4 Clinical features of hMLH1 promoter methylation -positive and-negative patients------------------------85
表五 Table 5 Clinical features of hMLH1 LOH -positive and-negative patients---------------------------------------------------86
表六Table 6 Clinical features of hMSH2 protein expression
—positive and-negative patients-----------------------87
表七Table 7 Clinical features of hMSH2 mRNA expression
-positive and-negative patients ------------------------88
表八Table 8 The correlation of hMLH1 protein expression , promoter hypermethylation and mRNA expression -------------------------------------------------------------89

捌、參考文獻
Aaltonen L.A. Peltomaki P. Leach F.S. Sistonen P. Pylkkanen L. Mecklin JP. Jarvinen H. Powell SM. Jen J. Hamilton SR. et al. Clues to the pathogenesis of familial colorectal cancer. Science, 260: 812-6, 1993
Ahuja N. Mohan A.L. Li Q. Stolker J.M. Herman J.G. Hamilton S.R. Baylin S.B. Issa J.P. Association between CpG island methylation and microsatellite instability in colorectal cancer. Cancer Res., 57: 3370-4, 1997
Benachenhou N. Guiral S. Gorska-Flipot I. Labuda D. Sinnett D. High resolution deletion mapping reveals frequent allelic losses at the DNA mismatch repair loci hMLH1 and hMSH3 in non-small cell lung cancer. Int. J. Cancer, 77: 173-80, 1998
Betticher D.C. White G.R. Vonlanthen S. Liu X. Kappeler A. Altermatt H. J. Thatcher N. Heighway J. G1 control genes status is frequently altered in resectable non-small cell lung cancer. Int. J. Cancer 74: 556-62, 1997.
Boige V. Laurent-Puig P. Fouchet P. Flejou J.F. Monges G. Bedossa P. Bioulac-Sage P. Capron F. Schmitz A. Olschwang S. Thomas G. Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. Cancer Res., 57: 1986-90, 1997
Bronner C.E. Baker S.M. Morrison P.T. Warren G. Smith L.G. Lescoe M.K. Kane M. Earabino C. Lipford J. Lindblom A. Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature., 368: 258-61, 1994
Brown T.A. Genomes, New York., John Wiley & Sons (ASIA) Pte. Ltd., p.177, 1999
Cavenee W.K. Dryja T.P. Phillips R.A. Benedict W.F. Godbout R. Gallie B.L. Murphree A.L. Strong L.C. White R.L. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature, 305: 779-84, 1983
Cawkwell L. Gray S. Murgatroyd H. Sutherland F. Haine L. Longfellow M. O'Loughlin S. Cross D. Kronborg O. Fenger C. Mapstone N. Dixon M. Quirke P. Choice of management strategy for colorectal cancer based on a diagnostic immunohistochemical test for defective mismatch repair. Gut., 45: 409-15, 1999
Chang J.W. Chen Y.C. Chen C.Y. Chen J.T. Chen S.K. Wang Y.C. Correlation of genetic instability with mismatch repair protein expression and p53 mutations in non-small cell lung cancer. Clinical Cancer Research., 6: 1639-46, 2000
Chen J.T. Chen Y.C. Chen C.Y. Wang Y.C. Loss of p16 and/or pRb protein expression in NSCLC: an immunohistochemical and prognostic study. Lung Cancer, 31: 163-170, 2001
Chen R. Wei L. and Chen R.L. Lung cancer mortality update and prevalence of smoking among copper miners and smelters. Scandinavian J. Work, Environ. Health, 21: 513-6, 1995
Chino K. Esumi M. Ishida H. Okada K. Characteristic loss of heterozygosity in chromosome 3P and low frequency of replication errors in sporadic renal cell carcinoma. Journal of Urology, 162: 614-8. 1999
Cliby W. Ritland S. Hartmann L. Dodson M. Halling KC. Keeney G. Podratz KC. Jenkins RB. Human epithelial ovarian cancer allelotype. Cancer Res., 53: 2393-8, 1993
Deng G. Chen A. Hong J. Chae H.S. Kim Y.S. Methylation of CpG in a small region of the hMLH1 promoter invariably correlates with the absence of gene expression. Cancer Res., 59: 2029-33, 1999
Donald G. Mismatch repair, somatic mutations, and the origins of cancer. Cancer res., 55: 5489-92, 1995
Elledge S.J. Cell cycle checkpoints: preventing an identity crisis. Science, 274: 1664-72, 1996
Endoh Y. Tamura G. Ajioka Y. Watanabe H. Motoyama T. Frequent hypermethylation of the hMLH1 gene promoter in differentiated-type tumors of the stomach with the gastric foveolar phenotype. American Journal of Pathology, 157(3): 717-22, 2000
Endow S.A. Polan M.L. Gall J.G. Satellite DNA sequences of Drosophila melanogaster. Journal of Molecular Biology, 96: 665-92, 1975
Friedberg E.C. Walker G.C. Siede W. DNA repair and mutatenesis. Washington (DC): ASM press, 1995.
Fujii H. Zhou W. Gabrielson E. Detection of frequent allelic loss of 6q23-q25.2 in microdissected human breast cancer tissues. Genes, Chromosomes & Cancer, 16: 35-9, 1996
Fujimoto K. Yamada Y. Okajima E. Kakizoe T. Sasaki H. Sugimura T., Terada M. Frequent association of p53 gene mutation in invasive bladder cancer. Cancer Res., 52: 1393-1398, 1992
Gao Y.T. Risk factors for lung cancer among nonsmokers with emphasis on lifestyle factors. Lung Cancer, 14: S39-S45, 1996
Ger L.P. Hsu W.L. Chen K.T. Chen C.J. Risk factors of lung cancer by histological category in Taiwan. Anticancer Res., 13: 1491-1500, 1993
Han H.J. Yanagisawa A. Kato Y. Park J.G. Nakamura Y. Genetic instability in pancreatic cancer and poorly differentiated type of gastric cancer. Cancer Res., 53: 5087-9, 1993
Herman J.G. Jen J. Merlo A. Baylin S.B. Hypermethylation-associated inactivation indicates a tumor suppressor role for p15INK4b1. Cancer Res., 56: 722-727, 1996
Herman J.G. Umar A. Polyak K. Graff J.R. Ahuja N. Issa J.J. Markowitz S. Willson J.V. Hamilton S.R. Kinzler K.W. Kane M.F. Kolodner R.D. Vogelstein B. Kunkel T.A. Baylin SB. Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc. Natl. Acad. Sci. USA, 95: 6870-75, 1998
Hu X. Guo Z. Pang T. Li Q. Afink G. Ponten J. Immunohistochemical and DNA sequencing analysis on human mismatch repair gene MLH1 in cervical squamous cell carcinoma with LOH of this gene. Anticancer Res., 20(1A): 171-5, 2000
Ionov Y. Peinado M.A. Malkhosyan S. Shibata D. Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature, 363: 558-61, 1993
Jerrold H.Z. Biostatistical analysis Presentice-Hall International, Inc. p.93, p.235, 1996
Johannsdottir J.T. Bergthorsson J.T. Gretarsdottir S. Kristjansson A.K. Ragnarsson G. Jonasson J.G. Egilsson V. Ingvarsson S. Replication error in colorectal carcinoma: association with loss of heterozygosity at mismatch repair loci and clinicopathological variables. Anticancer Res., 19: 1821-6, 1999
Kane M.F. Loda M. Gaida G.M. Lipman J. Mishra R. Goldman H. Jessup J.M. Kolodner R. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res., 57: 808-811, 1997.
Kaplan E.L. Meier P. Nonparametric estimation from incomplete observation. J. Am. Stat. Assoc., 53: 457-81, 1958
Karnik P. Plummer S. Casey G. Myles J. Tubbs R. Crowe J. Williams B.R. Microsatellite instability at a single locus (D11S988) on chromosome 11p15.5 as a late event in mammary tumorigenesis. Human Molecular Genetics, 4: 1889-94, 1995
Katabuchi H. van Rees B. Lambers A.R. Ronnett B.M. Blazes M.S. Leach F.S. Cho K.R. Hedrick L. Mutations in DNA mismatch repair genes are not responsible for microsatellite instability in most sporadic endometrial carcinomas. Cancer Res., 55(23): 5556-60, 1999
Kawanishi M. Kohno T. Otsuka T. Adachi J. Sone S. Noguchi M. Hirohashi S. Yokota J. Allelotype and replication error phenotype of small cell lung carcinoma. Carcinogenesis, 18: 2057-62, 1997
Knudson A.G. Meadows A.T. Nichols W.W. Hill R. Chromosomal deletion and retinoblastoma. N. Engl. J. Med., 295: 1120-1123, 1976
Kohno T. Kawanishi M. Matsuda S. Ichikawa H. Takada M. Ohki M. Yamamoto T. Yokota J. Homozygous deletion and frequent allelic loss of the 21q11.1-q21.1 region including the ANA gene in human lung carcinoma. Genes, Chromosomes & Cancer, 21: 236-43, 1998
Kohno T. Yokota J. How many tumor suppressor genes are involved in human lung carcinogenesis. Carcinogenesis, 20: 1403-10, 1999
Kok K. Naylor SL. Buys CH. Deletions of the short arm of chromosome 3 in solid tumors and the search for suppressor genes. Advances in Cancer Research, 71: 27-92, 1997
Koo L.C. Ho J.H.C. Worldwide epidemiological patterns of lung cancer in nonsmokers. Int. J. Epidemiol., 19: S14-S23, 1990.
Koo L.C. Ho J.H.C. Diet as a confounder of the association between air pollution and female lung cancer: Hong Kong studies on exposures to environmental tobacco smoke, incense, and cooking fumes as examples. Lung Cancer, 4: S47-S61, 1996.
Kuismanen S.A. Holmberg M.T. Salovaara R. Chapelle A. Peltomaki P. Genetic and epigenetic modification of MLH1 accounts for a major share of microsatellite-unstable colorectal cancers. American Journal of Pathology, 156(5): 1773-9, 2000
Le Beau M.M. Rowley J.D. Chromosomal abnormalities in leukemia and lymphoma:clinical and biological significance. Advances in Human Genetics, 15: 1-54, 1986
Lehninger A. Nelson L. Cox M.M. Principle of biochemistry. New York: Worth Publisher, Inc., 386, 1993.
Lengauer C. Kinzler K.W. Vogelstein B. Genetic instabilities in human cancers Nature, 396: 643-649, 1998
Leung S.Y. Yuen S.T. Chung L.P. Chu K.M. Chan A.S. Ho J.C. hMLH1 promoter methylation and lack of hMLH1 expression in sporadic gastric carcinomas with high-frequency microsatellite instability. Cancer Res., 59: 159-64, 1999
Leung W.K Kim J.J Wu L. Sepulveda J.L. Sepulveda A.R. Identification of a second MutL DNA mismatch repair complex (hPMS1 and hMLH1) in human epithelial cells. Journal of Biological Chemistry, 275(21): 15728-32, 2000
Lin J.T. Wu M.S. Shun C.T. Lee W.J. Wang J.T. Wang T.H. Sheu J.C. Microsatellite instability in gastric carcinoma with special references to histopathology and cancer stages. European Journal of Cancer, 31A: 1879-82, 1995
Liu T. Tannergard P. Hackman P. Rubio C. Kressner C. Lindmark G. Hellgren D. Lambert B. Lindblom A. Missense mutations in hMLH1 associated with colorectal cancer. Human Genetics, 105: 437-41, 1999
Lovett S.T. Feschenko V.V. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc. Natl. Acad. Sci. USA, 93: 7120-4, 1996
Madlensky L. Bapat B. Redston M. Pearl R. Gallinger S. Cohen Z. Using genetic information to make surgical decisions: report of a case of a 13-year-old boy with colon cancer. Diseases of the Colon & Rectum 40(2): 240-3, 1997
Markowitz S. Wang J. Myeroff L. Parsons R. Sun L. Lutterbaugh J. Fan RS. Zborowska E. Kinzler KW. Vogelstein B. Brattain M. and Wilson JKV. Inactivation of the type II TGF-b receptor in colon cancer cells with microsatellite instability. Science, 268: 1336-38. 1995.
Mertens F. Johansson B. Hoglund M. Mitelman F. Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res., 57: 2765-80, 1997
Murray A.W. The genetics of cell cycle checkpoints. Current Opinion in Genetics & Development, 5: 5-11, 1995
Nasmyth K. At the heart of the budding yeast cell cycle. Trends in Genetics, 12: 405-12, 1996
Nicolaides N.C. Papadopoulos N. Liu B. Wei Y.F. Carter K.C. Ruben S.M. Rosen C.A. Haseltine W.A. Fleischmann R.D. Fraser C.M. Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature, 371: 75-80, 1994
Papadopoulos N. Nicolaides N.C. Wei Y.F. Ruben S.M. Carter K.C. Rosen C.A. Haseltine W.A. Fleischmann R.D. Fraser C.M. Adams M.D. Mutaion of a mutL homolog in hereditary colon cancer, Science. 263: 1625-9, 1994
Peinado M.A. Malkhosyan S. Velazquez A. Perucho M. Isolation and characterization of allelic losses and gains in colorectal tumors by arbitrarily primed polymerase chain reaction. Proc. Natl. Acad. Sci. USA, 89: 10065-9, 1992
Peltomaki P. DNA mismatch repair gene mutations in human cancer. Environmental Health Perspectives, 105 Suppl 4: 775-80, 1997
Sato S. Nakumara Y. and Tsuchiya E. Difference of allelotype between squamous cell carcinoma and adenocarcinoma of the lung cancer Res., 54:5652-55, 1994
Sato T. Tanigami A. Yamakawa K. Akiyama F. Kasumi F. Sakamoto G. Nakamura Y. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res., 50: 7184-9, 1990
Seeger R.C. Brodeur G.M. Sather H. Dalton A. Siegel S.E. Wong K.Y. Hammond D. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New England Journal of Medicine, 313: 1111-6, 1985
Shields P.G. Xu G.X. Blot W.J. Fraumeni J.F. Trivers G.E. Pellizzari E.D. Qu Y.H. Gao Y.T. Harris C.C. Mutagens from heated Chinese and U. S. cooking oils. Journal of the National Cancer Institute, 87: 836-841, 1995.
Shiseki M. Kohno T. Adachi J. Okazaki T. Otsuka T. Mizoguchi H. Noguchi M. Hirohashi S. Yokota J. Comparative allelotype of early and advanced stage non-small cell lung carcinomas. Genes, Chromosomes & Cancer, 17: 71-7, 1997
Shiseki M. Kohno T. Nishikawa R. Sameshima Y. Mizoguchi H. Yokota J. Frequent allelic losses on chromosomes 2q, 18q, and 22q in advanced non-small cell lung carcinoma. Cancer Res., 54: 5643-8, 1994
Strathdee G. MacKean MJ. Illand M. Brown R. A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene, 18: 2335-41, 1999
Takagi Y. Koo L.C. Osada H. Ueda R. Kyaw K. Ma C.C. Suyama M. Saji D. Takahashi T. Tominaga S. Distinct mutational spectrum of the p53 gene in lung cancers from Chinese women in Hong Kong. Cancer Res., 55: 5354-7, 1995
Testa J.R. Liu Z. Feder M. Bell D.W. Balsara B. Cheng J.Q. Taguchi T. Advances in the analysis of chromosome alterations in human lung carcinomas. Cancer Genetics & Cytogenetics, 95: 20-32, 1997
Thibodeau S. Bren G. and Schaid D. Microsatellite instability in cancer of the proximal colon. Science, 260: 816-819, 1993
Thibodeau S.N. French A.J. Roche P.C. Cunningham J.M. Tester D.J. Lindor N.M. Moslein G. Baker S.M. Liskay R.M. Burgart L.J. Honchel R. Halling K.C. Altered expression of hMSH2 and hMLH1 in tumors with microsatellite instability and genetic alterations in mismatch repair genes. Cancer Res., 56: 3830-36, 1996
Tomizawa Y. Adachi J. Kohno T. Yamaguchi N. Saito R. Yokota J. Identification and characterization of families with aggregation of lung cancer. Japanese Journal of Clinical Oncology, 28: 192-5, 1998
Travis W.D. Lubin J. Ries L. Devesa S. United States lung carcinoma incidence trends. Cancer, 77: 2464-2470, 1996
Tsuchiya E. Nakamura Y. Weng S.Y. Nakagawa K. Tsuchiya S. Sugano H. Kitagawa T. Allelotype of non-small cell lung carcinoma comparison between loss of heterozygosity in squamous cell carcinoma and adenocarcinoma. Cancer Res., 52: 2478-81, 1992
Virmani A.K. Fong K.M. Kodagoda D. McIntire D. Hung J. Tonk V. Minna J.D. Gazdar A.F. Allelotyping demonstrates common and distinct patterns of chromosomal loss in human lung cancer types. Genes, Chromosomes & Cancer, 21: 308-19, 1998
Wang S.I. Omatic mutations of PTEN in glioblastoma multiforme Cancer Res., 57: 4183-4186, 1997
Wang Y.C. Chen C.Y. Chen S.K. Cherng S.H. Ho W.L. Lee H. High frequency of deletion mutations in p53 gene from squamous-cell lung cancer patients in Taiwan. Cancer Res., 58: 328-33, 1998.
Wen C.P. Tsai S.P. Yen D.D. The health impact of cigarette smoking in Taiwan. Asia-Pacific J. Public Health, 7: 206-213, 1994.
Wheeler J.M. Beck N.E. Kim H.C. Tomlinson L.P. Mortensen N.J. Bodmer W.F. Mechanisms of inactivation of mismatch repair genes in human colorectal cancer cell lines: the predominant role of hMLH1. Proc. Natl. Acad. Sci. USA, 96:10296-301.1999
Wieland I. Ammermuller T. Bohm M. Totzeck B. Rajewsky M.F Microsatellite instability and loss of heterozygosity at the hMLH1 locus on chromosome 3p21 occur in a subset of nonsmall cell lung carcinomas. Oncology Res., 8(1): 1-5, 1996
Xinarianos G. Liloglou T. Prime W. Maloney P. Callaghan J. Fielding P. Gosney J.R. Field J.K. hMLH1 and hMSH2 expression correlates with allelic imbalance on chromosome 3p in non-small cell lung carcinomas. Cancer Res., 60: 4216-21, 2000
Yokota J. Wada M. Shimosato Y. Terada M. Sugimura T. Loss of heterozygosity on chromosomes 3, 13, and 17 in small-cell carcinoma and on chromosome 3 in adenocarcinoma of the lung. Proc. Natl. Acad. Sci. USA, 84: 9252-6, 1987
Yu S.Z. and Zhao N. Combined analysis of case-control studies of smoking and lung cancer in China. Lung Cancer, 14: S161-S170, 1996.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top