跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/13 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭建賢
研究生(外文):Chien-Hsien Kuo
論文名稱:以粒線體DNA及乳酸去氫酉每基因研究盲鰻的親緣關係與演化
論文名稱(外文):Molecular phylogeny and evolution of hagfish based on mtDNA and lactate dehydrogenase genes
指導教授:李信徹李信徹引用關係黃生黃生引用關係施河施河引用關係
指導教授(外文):Sin-Che LeeShong HuangStephen Ho Shih
學位類別:博士
校院名稱:國立臺灣師範大學
系所名稱:生物研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:114
中文關鍵詞:盲鰻乳酸去氫 酉每親緣關係演化脊椎動物
外文關鍵詞:hagfishlactate dehydrogenasephylogenyevolutionvertebrate
相關次數:
  • 被引用被引用:4
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:1
論文摘要
本論文涵蓋盲鰻的分子親緣關係與乳酸去氫酶在脊椎動物的表現與演化兩部份研究。有關盲鰻的分子親緣關係研究中本研究選取以粒線體DNA中之16S rRNA基因部份序列為遺傳標誌,進行親緣關係的分析,此一粒線體DNA片段共包含560個鹼基。實驗中共分析三屬15種盲鰻包括Paramyxine cheni, P. yangi, P. sheni, P. fernholmi, P. taiwanae, P. nelsoni, Eptatretus burgeri, E. carrhatus, E. stoutii, Myxine glutinosa, M. formosa, M. carifous, M. sp1, M. sp2, 及M. sp3等。以八目鰻為外群進行親緣關係樹建構,不管是以鄰近加入法(neighbor-joining)、最大儉約法(maximum parsimony)或最大可能性法(maximum likelihood)皆得到相似的親緣關係樹樹型。其中盲鰻亞科(Myxinidae)與黏盲鰻亞科(Eptatretidae)分別形成一單系群,而准盲鰻屬(Paramyxine)則為一多系群。由此分子親緣關係樹所得的結果與以根據形態特徵認為盲鰻的演化由多鰓孔演化為單鰓孔的假說並不一致。具五對鰓孔的P. cheni是黏盲鰻亞科位於親源關係樹最基部的種類。另外,本研究在台灣東北角海域發現一形態特殊的盲鰻,其體表為粉紅色,與產於紐西蘭的E. eso相似。經遺傳親緣關係分析後,發現其親緣關係與現今已知種類差異非常大,應屬一較原始的系群,因此將其描述為一新屬新種Rubicundus oligopores.
為了解乳酸去氫酶(lactate dehydrogenase, LDH)在爬蟲類與鳥類的表現與分布,特以同功異構酶染色法分析蜥蜴及鳥類的腦、眼、心臟、肝臟、骨骼肌肉以及睪丸等組織,發現乳酸去氫酶的分布與表現具有組織專一性,鳥類及蜥蜴除了具有脊椎動物都具備的LDH-A及LDH-B外,在分析31種鳥類及7種蜥蜴樣本中發現其中有8種鳥類和4種蜥蜴具有過去僅在哺乳類發現之第三種乳酸去氫酶(LDH-C)的表現。這與過去認為鳥類及爬蟲類沒有LDH-C的假說不同。
在LDH基因的選殖上以盲鰻為材料,得到一cDNA序列共包含1029個鹼基對,其中1026個為coding region,推導成胺基酸序列後與現有已知之LDH序列進行排序比對及親緣關係分析,盲鰻的胺基酸序列共有341個胺基酸,其中在第220位置起較其他物種的LDH多出8個胺基酸。與其他已知脊椎動物LDH序列進行比較後,發現此一盲鰻LDH基因序列在其他脊椎動物LDH基因都非常保守的位點上出現13個獨特變異,但這些變異的位點皆不屬於活性中心(active center)。在10個鑑別LDH-A與LDH-B的胺基酸位點上,有4個屬於LDH-A,2個屬於LDH-B,4個兩者都不是。與其他脊椎動物LDH-A相似的是,在C端最後第二個位點上盲鰻LDH序列也缺少一個胺基酸,由上述結果與最大簡約法所建構出來的樹型圖,可以認定此一盲鰻LDH序列屬於LDH-A。
另外由鄰近加入法與最大儉約法所得到親源關係樹,盲鰻LDH基因與八目鰻LDH基因並未聚集在同一個分支上。由鄰近加入法與最大儉約法所得的樹型圖,我們推論乳酸去氫酶的演化自頭索動物到脊椎動物的過程有一次基因複製的事件。而現今已知的硬骨魚LDH-C與爪蟾(Xenopus) LDH-A, LDH-C是由硬骨魚與四足類分離後才產生。
Abstracts
The study included molecular phylogeny of hagfish and evolution of lactate dehydrogenase. The mitochondrial DNA sequences from the large ribosomal RNA gene may be of great value for systematic and phylogenetic studies within families. Partial sequences of the 16S rRNA gene were obtained for comparisons among the following hagfish species, Paramyxine nelsoni, P. sheni, P. taiwanae, P. yangi, P. cheni, Eptatretus burgeri, E. stouii, E. cirrhatus, Myxine glutinosa, M. formosana, M. circifrons, M. sp1 and M. sp2. The boundary of first four Paramyxine species from 16S rRNA sequences is ambiguous; however, they are valid based on our further unpublished isozyme data as well as the gill aperture arrangement pattern. The present molecular data show that the genus Paramyxine is polyphyletic. Eptatretus and Paramyxine form a clade, but their included species can be grouped separately into two different subfamilies, the Myxininae and Eptatretinae. The phylogenetic pattern is not congruent with the number of branchial pouches or branchial apertures proposed by Nelson (1994) and Fernholm (1998), who addressed the evolutionary trend of hagfish as being from polybranchiates to monobranchiates and with all hagfish belonging to a monophyletic group. Furthermore, the larger genetic distance between P. cheni and the other Eptatretinae species suggest that P. cheni could be as a basal taxa in Eptatretinae. A new genus and species of Rubicundus oligoporos collected from the northeastern coast of Taiwan is described here. Rubicundus is distinguished by pink body coloration. Rubicundus oligoporos is a five-gilled species with a three-cusp multicusp on the anterior rows and a two-cusp one on the posterior rows. The putative taxonomic position of Rubicundus is discussed based on mitochondrial 16S rRNA gene fragment sequences.
In order to understand the expression of the multiple LDH isozymes in aves, the brain, eye, heart, liver, muscle, and testis were analyzed. Horizontal starch gel electrophoresis was used to examine isozymes of L-lactate dehydrogenase in 4 families and 7 genera of lizards and 33 aves species assigned to 6 orders. Like all other vertebrates, bords possess 2 fundamental LDH loci (LDH-A and LDH-B). A LDH-C product of the third locus was detected in only 8 species of birds and 4 lizards and, for the first time, was reported from the Passeriformes and lizards. The results of this study and those of other previous research suggest that avian LDH-C, reptile LDH-C, and mammalian LDH-C may be orthologous, and may have been derived from ancestor amniote LDH-A.
The present study has determined a cDNA sequence of LDH-A from the muscle of hagfish, it contains 1428 nucleotides including a protein-encoding sequences of 1026 nucleotides, the 5’(54 nucleotides) and 3’ (342 nucleotides) untranslated region.
The hagfish LDH-A protein that we deduced from the nucleotide sequence is 341 amino acids long. Compared to the other vertebrate LDH, the sequence added 8 amino acids in the low hydrophobicity region at position 220-227. Hagfish LDH unique 9 positions exhibit alternative amino acid those conserved in all vertebrates. None of the alternative amino acids positions makes up the active center. Of the 10 positions that are diagnostic for LDH-A versus LDH-B in the gnathostome vertebrate examined, the hagfish LDH-A sequence resemble LDH-A at four, LDH-B at two, and neither at four. Hagfish LDH, like that of the all vertebrate LDH-As is also missing an amino acid at the penultimate position. The hagfish sequence, with its greater similarity to chordate LDH-A sequence in this region, provides additional evidence that the amino acid was added in the common ancestor of LDH-Bs. Our phylogenetic conclusions that LDH of hagfish muscle is a ancestral LDH-A and the lamprey single locus condition is due to gene loss. Both distance and maximum parsimony analysis strongly reject a relationship of hagfish LDH-A with lamprey LDH.
封面
Chinese abstracts
Abstracts
Chaper 1 Introduction
Chapter 2 Methods and Materials
2.1 Morphological characteristics
2.2 Mitochondrial DNA sequence analysis
2.3 Isozyme
2.4 LDH ene cloning
Chapter 3 Molecular phylogeny of hagfish with 16S rRNA
3.1 Results
3.2 Discussions
Chapter 4 16S rRNA for designation of new hagfish genus and species
4.2 Results
Discussions
Chapter 5 Expression patterns of LDH in a aminote with extension to its evolutionary implication among vertebrates
5.1 Distribution of LDH-C isozyme among avain taxa
5.1.1 Results
5.1.2 Discussions
5.2 Expressions of LDH-C isozyme among lizard
5.2.1 Results
5.2.2 Discussion
Chapter 6 Evolutionary impliction of hagfish LDH gene based on cloning of lactate dehydrogenase gene in hagfish
6.1 Results
6.1.1 Sequence of the hagfish LDH-A
6.1.2 Phylogenetic position of hagfish LDH-A
6.1.2 Evolution of LDH gene
6.2 Discussion
Conclusions
References
Tables
Figures
References
Adam, H., and Strahan R. (1963). Systematics and geographical distribution of myxinoids. In “The biology of Myxine” (A. Brodal, and F. Fange, Eds.) pp. 1-8. Univeritetforlaget. Oslo, Norway.
Allard, M. W., Miyamoto, M. M., Jareche, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyl family Bovidae. Proc. Natl. Acad. Sci. USA 89:3972-3976
Almedida-Val, V. M. F, Val, A. L. (1993). Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. 105B: 21-28.
Alves-Gomes, J. A., Ortí, G., Haygood, M., Heiligenberge, W., and Meyer, A. (1995). Phylogenetic analysis of the South American electric fishes (Order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. Mol. Biol. Evol. 12:298-318
Avise, J. C., Bowen, B. W., Lamb, T., Meylan, A. B., and Bermingham, E. (1992). Mitochondrial DNA evolution at a turtle pace: evolution for low genetic variability and reduced microevolutionary rate in the testudines. Mol. Biol. Evol. 9:457-473
Baldwin, J., Lake, P. S., and Moon, T. M. (1987). Immunochemical evidence that the single lactate dehydrogenase of lamprey is more similar to LDHB4 than to LDHA4 of hagfish. J. Exp. Zool. 241: 1-8.
Baldwin, J., and Lake, P. S. (1987). Lactate dehydrogenase homopolymer of hagfish heart and the single lactate dehydrogenase of lamprey display greater immunochemical similarity to LDHC4 than to LDHB4 of teleost fish. J. Exp. Zool. 242: 99-102.
Bardack, D. (1991). First fossil hagfish (Myxinoidae): a record from the Pennsylvanian of Illinois. Science 245:701-703
Bernardi, G., and Bucciarelli, G. (1999). Molecular phylogeny and speciation of the surfperches (Embiotocidae, Perciformes). Mol. Phyl. Evol. 13:78-81
Blanco, A. (1991). Functional significance of the testis and sperm-specific lactate dehydrogenase isozyme (LDH-C4). Academia Nacional De Ciencias No. 84, p. 33.
Buth, D. G. (1984). The application of electrophoretic data in systematic studies. Ann. Rev. Ecol. Syst. 15: 501-522.
Carroll, R. L. (1987). Vertebrate paleontology and evolution. WH. Freeman, New York.
Chen, T. F., and Yu, M. J. (1986). A Synopsis of the Vertebrates of Taiwan (2nd ed.). Vol. 1. pp. 44-47. Taipei: Commerical Book Co. (in Chinese).
Crawford, D. L, and Powers, D. A. (1989). Molecular basis of evolutionary adaptation at the lactate dehydrogenase-B locus in the fish Fundulus heteroclitus. Proc. Natl. Acad. Sci. USA 86: 9365-9369.
Dean, B. (1904). Notes on Japanese Myxinoids. A new genus, Paramyxine, and a new species, Homea okinoseana, reference also to their eggs. J. Coll. Sci. Imperial Univ. (Tokyo, Japan) 19:1-23
Desalle, R., and Templeton, A. R. (1989). Founder effect and rate of mitochondrial DNA evolution of Hawaiian Drosophila. Evolution 42:157-164
Eemisse, D. J., and Kluge, A. G. (1993). Taxonomic congruence versus total evidence, and amniote phylogeny inferred from fossils, molecules, and morphology. Mol. Biol. Evol. 10: 1170-1195.
Farias, I. P., Ortí, G., Sampaio, I., Schneider, H., and Meyer, A. (1999). Mitochondrial DNA phylogeny of the family Cichlidae: monophyly and fast molecular evolution of the Neotropical assemblage. J. Mol. Evol. 48:703-711
Farias, I. P. Paula-Silva, M. N. and Almeida-Val, V. M. F. (1997). No co-expression of LDH-C in Amazon cichlids. Comp. Biochem. Physiol. 117B:315-319.
Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791
Fernholm, B. (1991). Eptatretus eso: a new species of hagfish (Myxinidae) from the Tasman Sea. Japanese Journal of Ichthyology 38, 115-118
Fernholm, B. (1998). Hagfish systematics. In The Biology of Hagfish. (Jørgensen J. M., Lomholt J. P., Weber R. E. & Malte H. eds.) p. 578. London: Chapman & Hall
Fernholm, B., and Hubbs, C. (1981). Western Atlantic hagfishes of the Genus Eptatretus (Myxinidae) with description of two new species. Fishery Bulletin 79, 69-83
Fernholm, B. (1981). A new species of hagfish of the genus Myxine, with notes on other eastern Alantic myxinids. J. Fish. Biol. 19:73-82
Fernholm, B. (1982). Eptatretus carribbeaus: a new species of hagfish (Myxinidae) from the Caribbean. Bull. Mar. Sci. 32:434-438
Fernholm, B. (1998). Hagfish systematics. In “The biology of hagfish” (J. M. Jørgensen, J. P. Lomholt, R. E. Weber, and H. Malte, Eds.). Chapman & Hall, London. p. 578
Fernholm, B., and Holmberg, K. (1975). The eyes in three genera of hagfish (Eptatretus, Paramyxine and Myxine) — a case of degenerative evolution. Vision Res. 15:253-259
Fernholm, B., and Hubbs, C. (1981). Western Atlantic hagfishes of the Genus Eptatretus (Myxinidae) with description of two new species. Fish. Bull. 79:69-83
Fisher S. E., Shaklee, J. B., Ferris, S. D., and Whitt, G. S. (1980). Evolution of five multilocus isozyme systems in the chordates. Genetics 52: 73-85.
Forey, P. L., and Janvier, P. (1993). Agnathans and the origin of jaws vertebrates. Nature 361, 129-134
Goldberg, E. (1971). Immunochemical specifity of lactate dehydrogenase-X. Proc. Natl. Acad. Sci. USA 68: 349-352.
Goldberg, E. (1977). Isozyme in testes and spermatozoa. Isozymes: Curr. Topics Biol. Med. Res. 1: 79-124.
Golderg, E., (1990). Developmental expression of lactate dehydrogenase isozyme during spermatogensis. In Isozyme: Structure, Function, and Use in Biology and Medicine, eds. Rattazzi, M C., J.G. Scandalios, and G.S. Whitt. (Liss, New York), pp.49-52.
Grimalt P. E., Castro, L. P.,Mayorga, L. S., and Bertini, F. (1995). Epididymal acid hydrolases in the annual reproductive cycle of two lizards. Comp. Biochem. Physiol. 112A: 321-325.
Hasegawa, M., Kishino, H., and Yano, T. (1985). Dating of human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22:160-174
Hedges, S. B., Moberg, K. D., and Maxsom, R. L. (1990). Tetrapod phylogeny inferred from 18S and 28s ribosomal RNA sequences and a review of the evidence for amniote relationships. Mol. Biol. Evol. 7: 607-633.
Hendriks, W., Mulders, J. W. M., Bibby, M. A., Slingsby, C., Bloemendal, H., Aand Jong, W.W. (1988). Duck lens ε-crystallin and lactate dehydrogenase B4 are identical: a single-copy gene product with two distinct functions. Proc. Natl. Acad. Sci. USA 85:7114-7118.
Holbrook, J. J., Lilgas, A., Steindel, S. J., and Rossmann, M. G.. (1975). Lactate dehydrogenase. In PD Boyer, ed. The enzymes. Vol. 11, part A. New York: Academic Press, pp. 191-292.
Holmes, R.S., (1972). Evolution of lactate dehydrogenase gene. FEBS Lett. 28:51-55
Holmes, R. S., and Scopes, P. K. (1974) Immunological homologies among vertebrate lactate dehydrogenase isozymes. Eur. J. Biochem. 43:167-177.
Hondred, D., and Hanson, A. D. (1990). Hypoxically inducible barley lactate dehydrogenase: complementary DNA cloning and molecular analysis. Proc. Natl. Acad. Sci. USA 87:7300-7304
Huang, W. S. 1996. Reproductive cycles and sexual dimorphism in the viviparous skink, Sphenomorphus indicus (Sauria: Scincidae), from Wushe, central Taiwan. Zool. Stud. 35: 55-61.
Huang, K. F. (1989). Studies on mitochondrial DNA and systematics of hagfish. Ms. Thesis. National Sun Yet-sen University, Kaoshuing, Taiwan
Huang, K. F., Mok, H. K., and Huang, P. C. (1994). Hagfishes of Taiwan (II): Taxonomy as inferred from mitochondrial DNA diversity. Zool Stud 33:186-191
Jansson, H., Wyoni, P. I., Fernholm, B., Bredwad, M., Mierzykowaka, A., and Tegelstrom, H. (1995). Genetic relationships among species of hagfish revealed by protein electrophoresis. J. Fish. Biol. 47:599-608
Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In “Mammalian protein metabolism” (H. N. Munro, Ed.), Academic Press, New York, pp 21-122
Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111-120
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paddo, S. Villablanca, F. X. and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196-6200
Kumar, S., Tamura, K., and Nei, M. (1994). MEGA: molecular evolutionary genetics analysis software for microcomputers. Comput Appl. in Biosci. 10:189-191
Kuo, C. H. and Mok, H. K. (1994). Eptatretus chinensis: a new species of hagfish (Myxinidae; Myxiniformes) from the South China Sea. Zoological Studies 33, 246-250
Kuo, C. H., Huang, K. F., and Mok, H. K. (1994). Hagfishes of Taiwan. I-A taxonomic revision with a description of four new Paramyxine species. Zool. Stud. 33:126-139
Kuo, C. H.; Kao, S.; Weng, C.F.; Lee, S. C., 1999: Expression of LDH-C isozyme among lizard taxa: evolutionary implications for the vertebrate lactate dehydrogenase gene family. Zool. Stud. 38:344-349
Laurin M, and Reisz, R. R. (1995). A reevaluation of early amniote phylogeny. Zool. J. Linn. Soc. 113: 165-223.
Li, S. S. L., Feldmann, R. J.,Okabe, M., and Pan Y. C. E. (1983). Evolutionary relationship of vertebrate lactate dehydrogenase isozyme A4 (muscle), B4 (heart) and C4 (testis). J. Biol. Chem. 258: 7029-7032.
Li, S. S. L., 1990. Human and mouse lactate dehydrogenase genes A (muscle), B (heart) and C (testis): protein structure, gene organization, regulation of expression, and molecular evolution. In ZI Ogita, CM Markert, eds. Isozyme: structure, function and use in biology and medicine. New York: Wiley-Liss, pp. 75-79.
Lin, J. Y., and Cheng, H. S. 1986. Annual reproductive and lipid storage patterns of the agamid lizard, Japalura swinhonis mitsukurii in southern Taiwan. Bull. Inst. Zool. Academia Sinica 25: 13-23.
Lin, J. Y., and Cheng, H. S. (1990). A synopsis of the lizards of Taiwan. Taipei: Taiwan Museum, 176 pp. (in Chinese).
Linnaeus, C. (1758). Systema Naturae (10th edn.) Holmiae:Laurentii Salvii
Long, G. L., (19760: The stereospecific distribution and evolutionary significance of invertebrate lactate dehydrogenase. Comp. Biochem. Physiol. B 55:77-83
Mannen, H, Tsoi, S. C. M., Krushkal, J. S., Li, W. H., and Li, S. S. L. (1997). The cDNA cloning and molecular evolution of reptile and pigeon lactate dehydrogenase isozyme. Mol. Biol. Evol. 14: 1081-1087.
Markert CL, F Möller. 1959. Mutiple forms of enzyme: tissue, ontogenetic and species-specific patterns. Proc. Natl. Acad. Sci. USA. 45: 753-763.
Markert, C. L., Shaklee, J. B., and Whitt, G. S. (1975). Evolution of gene. Science 189: 102-114.
Markert, C. L. (1983). Isozyme: conceptual history and biological significance. In MC Rattazzi, JG Scandalio, GS Whitt, eds. Isozyme: current topics in biological and medical research. Vol. 7. New York: AR Liss,. pp. 1-18.
Markert, C.L., (1984). Biochemistry and function of lactate dehydrogenase. Cell. Biochem. Funct. 2:131-134
Markert, C. L. Shaklee, J. B., and Whitt G. S., 1975: Evolution of a gene. Science 189:102-114.
Markert, C. L. (1987). Isozyme: Current Topics in Biological and Medical Research, eds. Rattazzi, M.C., J.G. Scandalios, and G.S. Whitt. (Liss, New York), Vol. 7, pp.1-17
Martins, J. M. (1995). Allozyme variation and expression in lizard of the Tropidurus nanuzae species group (Iguania: Tropiduridae). Copeia 1995: 665-675.
Matson, R. H. (1989). Distribution of the testes-specific LDH-X among avian taxa with comment on the evolution of the LDH gene family. Syst. Zool. 38: 106-115.
McMillan, C. B., and Wisner, R. L. (1984). Three new species of seven-gilled hagfishes (Myxinidae, Eptatretus) from the Pacific Ocean. Proceedings of California Academy of Science 43(16), 249-267.
Miyamoto, M. M., and Boyle, S. M. (1989). The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In “The hierarchy of life” (B. Fernholm, K. Bremer, L. Brundin, and H. Jornvall, Eds.). Elsevier, New York, pp 437-450
Mok, H. K., and Kuo, C. H. (2001). Myxine formosana: a new species of hagfish (Myxinidae, Myxiniformes) from the southwest waters of Taiwan. Japanese Journal of Ichthyology (in press)
Mok, H. K. (2001). Myxine koui, a new species of hagfish from Southwest Taiwan. Zool. Stud. (in press)
Mok, H. K., Tsoi, S. C. M., and Lee, S. C. (1988). Implication of tissue expression of lactate dehydrogenase-C gene in phylogenetic study of Euteleosts. Jpn. J. Ichthyol. 35: 31-39
Murphy, R. W., and Crabtree, C. B. (1985). Evolutionary aspects of isozyme patterns, number of loci, and tissue-specific gene expression in the praire rattlesnake, Crotalus viridis. Herpetologica 41: 451-470.
Murphy, R. W., and Matson, R. H. (1986). Evolution of isozyme characters in the tuatara, Sphenodon punctatus. New Zealand J. Zool. 13: 573-581.
Murphy, W. J., and Collier, G. E. (1997). A molecular phylogeny for Aplocheiloid fishes (Atherinomorpha, Cyprinodontiformes): The role of vicariance and the origins of annualism. Mol. Biol. Evol. 14:790-799
Nabeyama, M., Kubota, S., and Kohno, S. (2000). Concerted Evolution of a highly repetitive DNA family Eptatretidae (Cyclostomata, Agnatha) implies specifically differential homogenization and amplification events in their germ cells. J. Mol. Evol. 50:154-169
Nelson, J. S. (1994). Fishes of the world, 3th. John Wiley and Sons, Inc. New york, p. 600
Ortí, G., and Meyer, A. (1997). The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Syst. Biol. 46:75-100
Ortí, G., Petry, P., Porto, J. I. R., Jegu, M., and Meyer, A. (1996). Patterns of nucleotide change in mitochondrial ribosomal RNA genes and the phylogeny of piranhas. J. Mol. Evol. 42:169-182
Palumbi, S. R. (1996). Nucleic acids II: the polymerase chain reaction. In “Molecular systematics” (D. Hillis, C. Moritz, and B. K. Mable, Eds.). Sinauer Associates, Inc., Massachusetts, USA
Pesole, G., Sbisà, E., Mignotte, F., and Saccone, C. (1991). The branching order of mammals: phylogenetic trees inferred from nuclear and mitochondrial molecular data. J. Mol. Evol. 33:537-542
Quattro, J. M., Woods, H. A., and Powers, D. A., (1993). Sequence analysis of teleost retina-specific lactate dehydrogenase C: ecolutionary implications for the vertebrate lactate dehydrogenase gene family. Proc. Natl. Acad. Sci. USA 90:242-246.
Qureshi N. M., Yousuf, I., Naqvi, S., and Qureshi, M. A. 1978. Testis-specific LDH-X: studies in a reptilian species and in the rat following FSH, LH, and testosterone, and estrogen administration. Acta Endocrin. Suppl. 215: 104-105.
Rehse, P. H., and Davidson, W. S. (1986). Evolutionary relationship of fish C type lactate dehydrogenase to other vertebrate lactate dehydrogenase isozymes. Can. J. Fish. Aquat. Sci. 43: 1045-1051.
Saitou, N. and Nei, M. (1987). The Neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406-425
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425
Schar, H. P., and Zuber, H. (1979). Structure and function of L-lactate dehydrogenase from thermophilic and mesophilic bacteria. I) Isolation and characterization of lactate dehydrogenase from thermophilic and mesophilic bacilli. Hoppe-Seylers Z. Physiol. Chem. 360:795-807
Selander, R. K, Smith, M. H., Yang, S. Y., Johnson, W. E., and Gentry, J. B. 1971. Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud. in Genet. VI. Univ. Tex. Publ. 103: 49-90.
Selander, R. K., Smith, M.H., Yang, S.Y., Johnson, W. E., and Gentry, J.B. (1971). Biochemical polymorphism and systematics in the genus Peromyscus. I. Variation in the old field mouse (Peromyscus polionotus). Stud. Gene. VI. Univ. Tex. Publ., 7103:49-90.
Shaklee, J. B., Kepes, K. L., and Whitt, G. S. (1973). Specialized lactate dehydrogenase isozymes: the molecular and genetic basis for the unique eye and liver LDHs of teleost fish. J. Exp. Zool. 185: 217-240.
Shaklee, J.B., Kepes, K.L., and Whitt, G.S. (1973). Specialized lactate dehydrogenase isozymes: the molecular and genetic basis for the unique eye and liver LDHs of teleost fish. J. Exp. Zool. 185:217-240.
Shaw, C. R., and Prasad, R. (1970). Starch gel electrophoresis--a compilation of recipes. Biochem. Genet. 4:297-320.
Shen, S. C. and Tao, H. J. (1975). Systematic studies on the hagfish (Eptatretidae) in the adjacent waters around Taiwan with description of two new species. Chinese Bioscience 2, 65-79.
Shu, D. G., Luo, H. L., Conway, M. S., Zhang, X. L., Hu, S. X., Chen, L., Han, J., Zhu, M., Li, Y., and Chen, L. Z. (1999). Lower Cambrian vertebrates from South China. Nature 402:42-46
Stock, D. W., Quattro, J. M., Whitt, G. S., and Power, D. A. (1997). Lactate dehydrogenase (LDH) gene duplication during chordate evolution: the cDNA sequence of the LDH of the tunicate Styela plicata. Mol. Biol. Evol. 14: 1273-1284.
Stock, D. W., and Whitt, G. S. (1992). Evidence from 18S ribosomal RNA sequences that lampreys and hagfishes form a natural group. Science 257, 787-789
Strahan, R. (1963). The behaviour of myxinoids. Acta Zoology 44, 1-30
Strahan, R. (1975) Eptatretus longipinnis, n. sp., a new hagfish (Family Eptatretidae) from South Australia, with a key to the 5-7 gilled Eptatretidae. Aust. Zool. 18:137-148
Swofford, D. L. (1993). PAUP: phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL
Tajima, F., and Nei, M. (1984). Estimation of evolutionary distance between nucleotide sequences. Mol. Biol. Evol. 1:269-285
Takezaki, N., Rzhetsky, A., and Nei, M. (1995). Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12:823-833
Teng, H. T. (1958). A new cyclostome from Taiwan. China Fishery Monthly 66, 3-6.
Tsoi, S.C.M., Lee, S.C., and Chao, W. C. (1989) Duplicate gene expression and diploidization in an Asian tetraploid catostomid, Myxocyprinus asiaticus (Cypriniformes, Catostomidae) Comp. Biochem. Physiol. 93B:27-32.
Wheat, T. E., and Goldberg, E. (1983). Sperm-specific lactate dehydrogenase C4: antigenic structure and immunosuppression of fertility. In MC Rattazzi, JG Scandalio, GS Whitt, eds. Isozyme: current topics in biological and medical research. Vol. 7. New York: AR Liss, pp. 113-130.
Whitt, G. S. (1984). Genetic, developmental and evolutionary aspects of the lactate dehydrogensae isozyme system. Cell. Biochem. Funct. 2:134-139.
Whitt, G. S. (1987). In Isozymes: Current Topics in Biological and Medical Research, eds. Rattazzi, M. C., J. G. Scandalios, and G. S. Whitt (Liss, New York), Vol. 15, pp. 1-26.
Wilson, A.C., Kaplan, N.O., Levine, L., Pesce, A., Reichlin, M., and Allison, W. S. (1964). Evolution of lactate dehydrogenases. Fed. Proc. Fed. Am. Soc. Exp. Biol. 23:1258-1266
Wisner, R. L., and McMillan, C. B. (1988). A new species of hagfish, genus Eptatretus (Cyclostoma, Myxinidae) from the Pacific Ocean near Valparaiso, Chile, with new data on E. bischoffii and E. polytrema. Transaction of San Diego Society of Natural History 21, 227-244
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top