跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:f3de:de2a:940c:ec8b) 您好!臺灣時間:2024/12/04 08:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林相國
研究生(外文):Luke Lin
論文名稱:以電暈極化法增強KTP薄膜之二次非線性光學效應之研究
論文名稱(外文):The study of temperature dependence of second harmonic generation in KTP/SiO2 by corona poling
指導教授:吳渝
指導教授(外文):Adam. Y. Wu
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:76
中文關鍵詞:磷酸氧鈦鉀電暈極化二次非線性效應
外文關鍵詞:KTPcorona polingSHG
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來鐵電物薄膜的應用研究特別受到注意,如積體光學 電光元件,波導倍頻器,光纖通訊…等應用上,都已經有很大的成果。由於這些鐵電物質都擁有很強的鐵電特性和極大非線性光學系數所以特別引人注目,而磷酸氧鈦鉀(KTiOPO4, KTP)正是屬於這種鐵電物質。
我們的薄膜採用射頻(rf)濺鍍薄膜生長法將KTP晶體沈積在SiO2基材上。然後使用銨石榴石(Nd:YAG)雷射當作入射光源,接著我們利用Maker fringes 的方法, 量測從薄膜產生的二次諧波(SHG), 並由分析所得的資料計算其二階非線性光學有效係數。
我們使用電暈極化法(corona poling)加強二階非線性光學係數,這種因電場誘發而提高非線性光學係數方法,也是提高轉換效率的一種有效方法。同時在實驗結果中發現,在高溫極化時,玻璃基版所產生的干涉現象將不可忽視,這些發現將在本論文中作深入的討論。

Recently, there have been much interests in ferroelectric thin films for various applications such as integrated optics, fiber optics, electro-optic modulation and wave-guide frequency doublers, because they possesses interesting properties such as remanent polarizations and have large nonlinear optical and electro-optical coefficients. KTP is one of such ferroelectrics.
The SHG of KTP thin films on SiO2 substrate were studied by using a Nd:YAG laser. The electric field was applied to the sample by using a corona poling method. The KTP thin film were sputter deposited on fused SiO2 substrate. We studied the observed Maker fringes and calculated the nonlinear optical coefficient .
From our experimental results, we found that there are new phase matching conditions and there are constructive or destructive interferences in the glass substrate at positive angles.
We found that the nonlinear optical coefficient in the KTP thin film sample increases as the poling field and temperature increase.

Table of Contents
Acknowledgement…………………………...Ⅰ
Abstract………………………………………Ⅱ
Table of Contents………………………….…Ⅲ
Figure Captions………………………………VI
Chapter 1 Introduction 1
1-1.Properties of KTiOPO4 (KTP) Single Crystal……………..2
1-2.About Glass……….……………………………………….5
1-3.The Objective and Method of Study………………………6
1-4.Overview of the Following Chapters……………………...6
Chapter 2 Theoretical Analysis………………8
2-1. Nonlinear Optical………………………………..…….……8
2-2. Dipole moment and Polarization…………………………....9
2-3. Principle of frequency Doubling………………………….10
2-4. The Electric Field Induced Second Harmonic Generation
………….………………………………………………...19
2-5. Second Harmonic Generation in Ferroelectric Thin film by Corona poling..……………………………………………22
2-6.Maker Fringes.……………………………………………..23
2-7. Calculation for Values…………………………………..26
Chapter 3 Experimental Procedure………..30
3-1. Sample Preparation………………………………….…….30
3-2. Instruent.……………….………………………………….32
3-3. Beam Path………………………..…………………….….33
3-4. Measurement Conditions and Methods for Corona Poling
…………………………………………………………….35
3-5. Measurement Procedures…………………………….……37
Chapter 4 Results and Discussion………...39
4-1. The Original Value in KTP Thin Film…………..….40
4-2. NLO Effect by Corona poling at Different Temperature
…………………………………..……………………….47
4-3. Experiment Results and Value on Various Temperature…..………………………………………….48
4-4. New Direction after Corona Poling……………………...51
Chapter 5 Conclusion…………………….52
References………………………………….54

【1】Amnon Yariv and Pochi Yeh, “Optical waves in crystals”, Chapter 7 and 12, Wiley-Interscience Publication, New York (1983).
【2】K. Vivekanandan, S. Selvasekarapandian, P. Kolandaivel, M.T. Sebastian, S. Suma, “Raman and FT-IR spectroscopic characterization of flux grown KTiOPO4 and KRbTiOPO4 non-linear optical crystals”, Materials Chemistry and Physics 49, 204-210 (1997).
【3】David A. Roberts, “Simpified Characterization of Uniaxial and Biaxial Nonlinear Optical Crystals: A Plea for Standardization of Nomenclature and Conventions,” IEEE J. Quantum Electron., Vol. 28, No. 10. Oct (1992).
【4】Andrew J. W. Brown, Mark S. Bowers, Ken W. Kangas, and Charles H. Fisher, “High-energy, high-efficiency second-harmonic generation of 1064-nm radiation in KTP,” Optics Letters. Vol. 17, No. 2, (1992).
【5】Chung L. Tang, Walter R. Bosenberg,Takashi Ukachi, Randall J. Lane, and L. Kevin Cheng, “Optical Parametric Oscillators,” PROCEEDING of THE IEEE. Vol. 80. No. 3. MARCH (1992).
【6】K. Daneshvar, E.A. Gess, D. Kang, J.R. Williams, D. Dawes, Optical materials 12, 453-457 (1999).
【7】J.D. Bierlein and C.B. Arweiler, Appl. Phys. 49, 917 (1986).
【8】J.C. Jacco, G.M. Loiacono, M. Jaso, G. Mizell and B. Greenberg, J. Cryst. Growth, 70, 484 (1984).
【9】L.P. Shi, J. Chrosch, J.W. Wang and Y.G. Liu, Cryst. Res. Technol., 27, K76 (1992).
【10】S. Haussuhl, Shi Luping, Wang Baolia, Wang Jirang, J.Liebertz, A. Wostrack and Ch, Fink, Cryst. Res. Technol., 29, 583 (1994).
【11】L.K. Chang, L.T. Chang, J.D. Bierlein and F.C. Zumsteg, Appl. Phys. Lett., 62, 346 (1993).
【12】J.D. Bierlein and H. Vanherzeele, “Potassium titanyl phosphate: Properties and new applications,” J. Opt. SOC. Amer. B., vol. 6, pp. 622-633,1989.
【13】J.D. Bierlein, A.Ferretti, L.H. Birxner and W.Y. Hsu, Apl. Phys. Leet., 50 (1987) 1216.
【14】H. Vanherzeele, Appl. Opt., 29(1990) 2246.
【15】J.D. Bierlein and C.B. Arweiler, Appl. Phys. 47 (1976) 4980.
【16】J.D. Bierlein and T.E. Gier, U.S. Patent, No. 39349323(1976).F.C. Zumsteg, J.D. Bierlein and T.E. Gier, J. Appl. Phys. 47 (1976) 4980.
【17】J.Q. Yao and T.S. Fahlen, J. Appl. Phys. 55 (1984) 65.
【18】Yuhuan Xu “Ferroelectric Materials and Their Applications”, North-Holland Publication, 324, (1983).
【19】W.P. Risk, R.N. Payne, W. Lenth, “Noncritically phase-matched frequency doubling using 994nm dye and diode laser radiation in KTiOPO4”, Appl. Phys. Lett. 55(12)(1989) 1179.
【20】H.Y.Shen, Y.P.Zhou, W.X. Lin, Z.D. Zeng, R.R. Zeng, G.F. Yu, C.H. Huang, A.D. Jiang, S.Q. jia, D.Z. Shen, Second harmonic generation and sun frequency mixing of dual wavelength Nd:YAlO3 laser in flux grown KTiOPO4 crystal, IEEE. J. Quantum Electron. QE-28 (1)(1992) 48.
【21】A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Phase-matched second-harmonic generation in novel corona poled glass waveguides”, Appl. Phys. Lett. Vol. 60, No. 23, 2853 (1992).
【22】R. A. Myers, “Large Second-Order Nonlinearity in Amorphous SiO2 Using Temperature/Electric-Field Poling”, Ph.D. Dissertation, The University of New Mexico (1995).
【23】R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, 16, 1732 (1991).
【24】R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, Vol.16, p.1732, November (1991).
【25】J. S. Danel, M. Dufour, F. Michel, “Application of quartz micromachining to the realization of a pressure sensor”, IEEE International Frequency Control Symposium, p.581 (1993).
【26】J. Wilson and J. F. B. Hawkes, “Optoelectronics”, p.104 (1989).
【27】Yuhuan Xu “Ferroelectric Materials and Their Applications”, North-Holland Publication, Chapter 1 and 2, (1983).
【28】R. Normandin, and G. I. Stegeman, “Nondegenerate four-wave mixing in integrated optic”, Optics Letters, 4, 58 (1979).
【29】R.A. Myers, “Large Second-Order Nonlinearity in Amorphous SiO2 Using Temperature/Electric-Field Poling.” Dissertation, The University of New Mexico (1995)
【30】肖定全, “晶體物理學”, 四川大學出版社 (1989).
【31】A. Okada, K. Ishii, K. Mito, and K. Sasaki, “Second-order optical nonlinearity in corona-poled glass films”, J. Appl. Phys., Vol. 74, No. 1,1 July(1993).
【32】H. A. Lu, L. A. Wills, and B.W. Wessels, “Second harmonic generation of poled BaTiO3 thin films”, Appl. Phys. Lett. Vol. 62, No. 12, 1314 (1993).
【33】Y. R. Shen, “The principles of nonlinear optics”, Wiley, New York, 1984.
【34】R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, Vol. 16, No. 22, 1732 (1991).
【35】R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, 16, 1732 (1991).
【36】CH. Bosshard, G. Knopfle, P. Pretre, and P. Gunter, “Second-order polarizabilities of nitropyridine derivativtives determined with electric-field-induced second-harmonic generation and a solvatochromic method: A comparative study”, Journal of Applied Physics, 71, 1594 (1992).
【37】Hilary L. Hampsch and John M. Torkelson, “Second harmonic in corona poled, doped polymer films as a function of corona processing”, Journal of Applied Physics, 67, 1037 (1990).
【38】R. A. Myers, N. Mukherjee, and S. R. J. Brueck, “Large second-order nonlinearity in poled fused silica”, Optics Letters, 16, 1732 (1991).
【39】Hiroyuki Nasu, Hideki Okamoto, Kiyoshi Kurachi and Kanichi Kamiya, “Second-harmonic generation from electrically poled glasses: effects of OH concentration, defects and poling conditions”, Journal of Optical Society America B, 12, 644 (1995).
【40】H. Takebe, P.G. Kazansky and P. St. J. Russell, “Effect of poling conditions on second-harmonic generation in fused silica”, Optics Letters, 21, 468 (1996)
【41】.J. Jerphagnon and S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals”, Journal of Applied Physics, 41, 1667 (1970).
【42】Y. R. Shen, “The principles of nonlinear optic”, John Wiley & Sons (1984).
【43】David Statman and James A. Georges, “Charge dynamics and poling in glass waveguides”, Journal of Applied Physics, 80, 654 (1996).
【44】J. Jerphagnon and S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals”, Journal of Applied Physics, 41, 1667 (1970).
【45】D. A. Kleinman. “Nonlinear dielectric polarization in optical media”, Physical Review, 126, 1977 (1962).
【46】Robert C. Miller, “Mechanism of second harmonic generation of optical maser beams in quartz”, Physical Review, 131, 95 (1963).
【47】Robert C. Miller, “Absolute Signs of second-harmonic generation coefficients of piezoelectric crystals”, Physical Review B, 2, 4892 (1970).
【48】Joseph T. Verdeyen, “LASER ELECTRONICS”, P21 (1989)
【49】Gene H. Haertling Motorola, lnc. Ceramic Products Albuquerque, NM “Piezoelectric And Electrooptic Ceramics”.
【50】俞文海, 劉皖育, “晶體物理學”, 中國科學技術大學出版社 (1998).
【51】姚建銓, “非線性光學頻率變換及激光調協技術”, 科學出版社 (1995).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top