跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范佳銘
研究生(外文):Chia-Ming Fan
論文名稱:以二維非奇異性邊界元素法解析一些工程問題
論文名稱(外文):The Non-Singular Boundary Integral Equations Analysis to Some Engineering Problems
指導教授:楊德良楊德良引用關係
指導教授(外文):Der-Liang Young
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:90
中文關鍵詞:邊界元素法拉普拉斯(卜易松)方程式赫姆霍茲方程式修正型赫姆霍茲方程式非奇異性邊界積分方程式速度渦度法必歐沙伐定理史托克斯流場
外文關鍵詞:non-singular boundary integral equationLaplace equationPoisson equationHelmholtz equationmodified Helmholtz equationGauss flux theoremequal-potential theoryStokes flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討及改進傳統邊界元素法之數值奇異性。首先,利用高斯通量定理及等勢能理論推導拉普拉斯(卜易松)方程式、赫姆霍茲方程式及修正型赫姆霍茲方程式的非奇異性邊界積分方程式。其次,在圓形穴室流場及方形穴室流場中,以速度渦度法、必歐沙伐定理以及拉普拉斯(卜易松)方程式的非奇異性邊界積分方程式求解二維史托克斯流場,並與解析解及其他數值方法比較。在方形穴室流場中,利用速度渦度法以及修正型赫姆霍茲方程式的非奇異性邊界積分方程式求解低雷諾數流場,並與其他數值方法比較。利用赫姆霍茲方程式的非奇異性邊界積分方程式求解出方形導波管內的電磁場分佈,並與解析解及其他數值方法比較。本文發現利用非奇異性邊界積分方程式解析一些有趣的工程問題可以得到最有效率及最精準的結果。

In this study , the non-singular boundary integral equation method was used to circumvent the numerical singularity in traditional Boundary Element Method (BEM) . First of all , the non-singular boundary integral equations for the Laplace (Poisson) equation , the Helmholtz equation and the modified Helmholtz equation were derived by Gauss flux theorem and equal-potential theory . Then , the 2D Stokes flow of a circular cavity and a square cavity was computed by the velocity-vorticity formulation , the Biot-Savart law and the non-singular boundary integral equation for the Laplace equation . The velocity-vorticity formulation and the non-singular boundary integral equation for the modified Helmholtz equation are adopted to calculate the low Reynolds number flow field in a square cavity . In a square waveguide , the distributions of electromagnetic propagation for TE and TM modes were found by the non-singular boundary integral equation for the Helmholtz equation . All of the numerical simulations are compared with analytic solutions and other numerical results . The study shows that the non-singular boundary integral equations can get the most efficient and accurate results in solving some engineering problems associated with the governing equations of the Laplace , Poisson , Helmholtz , and modified Helmholtz equations .

1. Introduction................................................1
1.1 Motivations and Objectives..............................1
1.2 Literature Review.......................................2
1.3 Content of the Thesis...................................3
2. The Formulations of the Non-Singular Boundary Integral Equation.......................................................5
2.1 The Formulation of the NSBIE for the Laplace Equation...5
2.2 The Formulation of the NSBIE for the Helmholtz Equation.9
2.3 The Formulation of the NSBIE for the Modified Helmholtz Equation......................................................13
3. Analysis of Stokes Flow by the NSBIE for the Laplace Equation and the Biot-Savart Law..............................17
3.1 Governing Equations and Boundary Conditions............17
3.2 Numerical Procedures...................................20
3.3 Numerical Results and Comparisons......................21
4. Analysis of Low Reynolds Number Flow Field by the NSBIE for
the Modified Helmholtz Equation and the Laplace Equation......33
4.1 Governing Equations and Boundary Conditions............33
4.2 Numerical Procedures...................................35
4.3 Numerical Results and Comparisons .....................37
5. Analysis of the Electromagnetic Field by the NSBIE for the
Helmholtz Equation............................................50
5.1 Governing Equations and Boundary Conditions............50
5.2 Numerical Procedures...................................56
5.3 Numerical Results and Comparisons......................59
6. Conclusions and Recommendations............................86

1. Hess J.L. “Calculation of potential flow about bodies of revolution having axes perpendicular to the free-stream direction”, J. Aerospace , Sci. , Vol.29, pp.726-742, 1962.
2. Chen L.H. and Schweikert D.G. ”Sound Radiation from an arbitrary body”, J. Acoust. Soc. Am.,Vol.35,99. pp.1626-1632,1963.
3. Banaugh R.P. and Goldsmith W. “Diffraction of steady acoustic waves by surfaces of arbitrary shape”, J. Acoust. Soc. Am. ,Vol.35,pp.1590-1601,1963.
4. Banaugh R.P. and Goldsmith W. “Diffraction of steady elastic waves by surfaces of
arbitrary shape”, J. Appl. Mech., Vol.30,pp.589-597,1963.
5. Altiero N.J. and Gavazza S.D. “On a unified boundary-integral equation method”, Journal of Elasticity , Vol.10,pp.1-9,1980.
6. 吳光鐘 , Nonsingular Boundary Integral Equations , 行政院國家科學委員會專題研究計畫成果報告 , 台北 , NSC 87-2212-E-002-003 , 1998。
7. Anderson D.A. , Tannehill J.C. and Fletcher R.H. , Computational Fluid Mechanics and Heat Transfer , McGraw-Hill , New York , 1984 .
8. Giannattasio P. and Napolitano M. , “Optimal Vorticity Conditions for the Node-Centered Finite-Difference Discretization of the Second-Order Velocity-Vorticity Equations” , J. Comput. Phy. ,127,208-217,2000.
9. 梁恩維, “必歐沙伐定理與速度渦度及邊界元素法解二維史托克斯流場”, 國立臺灣大學土木工程學研究所碩士論文, 2000。
10. Bush M.N. and Tanner R.I. ,”Numerical Solution of Viscous Flow Using Integral Equation Methods”, International Journal of Numerical Method in Fluids , Vol. 3 , pp. 71-92 , 1983 .
11. Charles J. , Baudrand H. and Bajon D. ,“A Full-wave Analysis of an Arbitrarily Shaped Dielectric Waveguide Using Green’s Scalar Identity”, IEEE TransMicrowave Theory Tech. , vol. 39 , pp. 1029-1034 , June 1991 .
12. Hwang W. S. and Huang Y. Y. , “Non-singular direct formulation of boundary integral equations for potential flows” , Int. J. Number. Methods Fluids , 26, 627-635,1998.
13. Hwu T. Y. , Young D. L. and Chen Y. Y. “Chaotic Advections for Stokes Flows in Circular Cavity”, J. Engineering Mech. ,ASCE, Vol. 123, pp.774-782,1997.
14. Fusegi T. and Farouk B. , “Predictions of Fluid and Heat Transfer Programs by the Vorticity-Velocity Formulation of the Navier-Stokes Equations” , J. Comput. Phy. ,65,227-243,1986.
15. Young D.L. , Liu Y. H. and Eldho T.I. , “A combined BEM-FEM model for the velocity-vorticity formulation of the Navier-Stokes equations in three dimensions” , Engineering Analysis with Boundary Elements,24, pp.307-316,2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top