跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/10 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:薛如珊
研究生(外文):Hsueh, Ju-Shan
論文名稱:使用自組織映射網路進行資料群集和資訊樣型採擷的資料探勘法
論文名稱(外文):Data Mining Method Using Self-Organizing Map for Data Clustering and Information Extracting
指導教授:楊烽正楊烽正引用關係
指導教授(外文):Yang, Feng-Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:工業工程學研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:124
中文關鍵詞:資料庫內的知識發掘資料探勘類神經網路自組織映射網路群集
外文關鍵詞:Knowledge Discovery in Database (KDD)Data MiningArtificial Neural NetworkSelf-Organizing Map (SOM)cluster
相關次數:
  • 被引用被引用:7
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究提出一個以自組織映射網路執行群集運算的資料探勘法。本法使用資訊樣型為基的資訊採擷法解析群集後資料內部的特徵,發掘潛藏的有用資訊。研究目標係使自組織映射網路能有效地應用於資料庫內的知識發掘。本研究提出的資訊樣型比對法,係進行群集後資料的交叉比對分析。透過反覆逐步擴充的搜尋運算,將資料內部的知識以資訊樣型方式表達出來。此外為使資訊的表達具有口語性,整個探勘法設計了一個資訊語意對映機制,把各群各屬性的資料分布轉換成相對的歸屬等級。歸屬等級是以符合資料型態的口語語詞來表示,使得資訊樣型所呈現的內容更易於解讀。本文並發展一種強化群集的方法,定義出一個資料框聚係數,藉著改變此係數來達到強化群集的效果。過程是逐步適度的將群集的標準放寬,避免損失資料中隱含的有益資訊。本研究並以實例來驗證所提的架構與流程,驗證結果顯示本法能有效地採擷資料的特徵,較其它方法更能擷取不完全資訊及克服雜訊。
This thesis presents a data mining method that uses Self-Organizing Map to execute data clustering. Information extracting techniques for pattern search are used to analyze clustered data and to explore useful information. The goal of this research is to postulate the Self-Organizing Map for knowledge discovering in databases. The thesis defines several generic information patterns and data characteristics of the clustered data. This research presents a data coherence enhancement algorithm to intensify the resulting data groups. By gradually relaxing the data grouping restrictions, which is imposed by a data framing factor, data are grouped iteratively without losing useful information. To make information expression be more colloquial, a mapping mechanism is developed to change the data with various attributes into the ones that are easier comprehended. Ranks regarding to the data values are thus defined with an oral expression. Examples are tested to verify the presented data mining procedures. Results show that the method can effectively extract features of the clustered data. Results also show that the presented method is capable of extracting incomplete information and overcoming noise.
謝誌...........................................i
摘要..........................................ii
Abstract.....................................iii
目錄..........................................iv
圖目錄.......................................vii
表目錄......................................viii
名詞彙編.......................................x
符號列表....................................xiii
第一章 緒論...................................1
1.1 研究背景及動機.............................1
1.2 研究目的...................................2
1.3 研究範疇...................................3
1.4 研究方法及架構.............................4
1.5 章節概要...................................5
第二章 文獻探討...............................7
2.1 資料庫內的知識發掘.........................7
2.1.1 資料庫內的知識發掘的意義.................7
2.1.2 資料庫內的知識發掘的程序.................8
2.2 資料探勘..................................10
2.2.1 資料探勘的方法..........................10
2.2.2 資料探勘的技術..........................11
2.2.3 資料探勘的應用..........................13
第三章 類神經網路技術........................16
3.1 基本理論..................................16
3.1.1 基本名詞................................16
3.1.2 基本架構................................19
3.1.3 目前發展及應用..........................21
3.2 自組織映射網路............................21
3.2.1 特有名詞................................22
3.2.2 網路架構................................25
3.2.3 網路演算法..............................27
3.2.4 演算釋例................................29
第四章 以自組織映射網路為基的資料探勘流程.....33
4.1 資料探勘流程..............................33
4.2 資料前處理................................36
4.2.1 資料格式................................36
4.2.2 資料前處理流程..........................37
4.2.3 資料前處理釋例..........................38
4.3 資料群集劃分法則..........................40
4.3.1 分群門檻為基的群集劃分演算法............40
4.3.2 群集劃分釋例............................42
4.4 邊緣資料刪除法則..........................44
4.4.1 資料框聚係數............................45
4.4.2 群集強化演算法..........................46
4.4.3 群集強化釋例............................47
4.5 資料特徵表現法則..........................49
4.5.1 資料群集特徵值計算法....................49
4.5.2 特徵計算釋例............................50
4.6 歸屬等級對映法則..........................52
4.6.1 口語語詞表示法..........................52
4.6.2 歸屬等級對映演算法......................53
4.6.3 歸屬等級對映釋例........................55
4.7 資訊樣型比對法則..........................58
4.7.1 資訊樣型定義............................59
4.7.2 資訊樣型比對演算法......................62
4.7.3 資訊樣型比對釋例........................64
第五章 實例驗證及探討........................73
5.1 驗證資料..................................73
5.2 實例資料..................................88
第六章 結論與未來展望........................94
6.1 總結......................................94
6.2 未來展望..................................94
參考文獻......................................96
附錄..........................................99
謝俊宏,植基於類神經網路的分類模式建構之研究-以財務資料應用為
例,博士論文,私立淡江大學管理科學研究所,1998。
Andrews, R., Diederich, J., and Tickle, A.B., “Survey and
Critique of Techniques for Extracting Rules from Trained
Artificial Neural Networks,” Knowledge-Based Systems, Vol.
8, No. 6, pp. 373-389, 1995.
Agrawal, R., Imielinski, T., and Swami, A., “Database Mining:
A Performance Perspective,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 5, No. 6, pp. 914-925, 1993.
Chatterjee, C. and Roychowdhury, P., “On Self-Organizing
Algorithms and Networks for Class-Separability Features,”
IEEE Transactions on Neural Networks, Vol. 8, No. 3, pp. 663-
678, 1997.
Chen, M.S., Han, J., and Yu, S., “Database Mining: A Overview
from a Database Perspective,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 8, No. 6, pp. 866-883, 1996.
Fayyad, U., “Data Mining and Knowledge Discovery in Databases:
Implication for Scientific Databases,” Scientific and
Statistical Database Management, pp. 2-11, 1997.
Fayyad, U., Haussler, D., and Stolorz, P., “Mining Scientific
Data,” Communications of the ACM, Vol. 39, No. 11, pp. 51-
57, 1996.
Ferguson, C.J., Lees, B., MacArthur, E., and Irgens C., “An
Application of Data Mining for Product Design,” IEE
Colloquium on Knowledge Discovery and Data Mining, 1998.
Imielinski, T. and Mannila, H., “A Database Perspective on
Knowledge Discovery,” Communications of the ACM, Vol. 39,
No. 11, pp. 58-64, 1996.
Joutsensalo, J. and Miettinen, A., “Self-Organizing Operator
Map for Nonlinear Dimension Reduction,” Proceedings of
International Conference on Neural Networks (ICNN''95), Vol.
1, pp. 111-114, 1995.
Kohonen, T., “The Self-Organizing Map,” Proceedings of IEEE,
Vol. 78, pp. 1464-1480, 1990.
Kohonen, T., “Generalizations of The Self-Organizing Map,”
Proceedings of International Joint Conference on Neural
Networks (IJCNN''93), Vol. 1, pp. 457-462, 1993.
Kohonen, T., “Things You Haven''t Heard about the Self-
Organizing Map,” IEEE International Conference on Neural
Networks, Vol. 3, pp. 1147-1156, 1993.
Kohonen, T., “New Developments and Applications of Self-
Organizing Maps,” Proceedings of International workshop on
1996, pp. 164-172, 1996.
Lu, H., Setiono, R., and Lin, H., “Effective Data Mining Using
Neural Networks,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 6, pp. 957-961, 1996.
Nair, G. J. and Narendran , T. T., “Case: A clustering
algorithm for cell formation with sequence data,”
International Journal of Production Research, Vol.36, No. 1,
pp. 157-179, 1998.
Pham, D. T. and Bayro-Corrochano, E. J., “Self-Organizing
Neural-Network-Based Pattern Clustering Method with Fuzzy
Outputs,” Pattern Recognition, Vol. 27, No. 8, pp. 1103-
1110, 1994.
Piatetsky-Shapiro, G., “The Data Mining Industry Coming of
Age,” IEEE Transactions on Intelligent Systems, Vol. 14, pp.
32-34, 1999.
Samad, T. and Harp, S.A., “Feature Map Learning with Partial
Training Data,” Proceedings of International Joint
Conference on Neural Networks (IJCNN''91), Vol. 2, pp. 949,
1991.
Santosa, F., “Data Mining: An Industrial Research
Perspective,” IEEE Transactions on Computational Science and
Engineeaing, Vol. 42, pp. 6-9, 1997.
Sarle, W.S., “Neural Networks and Statistical Models,”
Proceedings of the Nineteenth Annual SAS Users Group
International Conference, April, 1994.
Vesanto, J. and Alhoniemi, E., “Clustering of the Self-
Organizing Map,” IEEE Transactions on Neural Networks, Vol.
11, No. 3, pp. 586-600, 2000.
Zhang, X. and Li, Y., “Self-Organizing Map as a New Method for
Clustering and Data Analysis,” Proceedings of International
Joint Conference on Neural Networks (IJCNN''93), pp. 2448-
2451, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王文中(民86):評分客觀性與能力估計客觀性:傳統作法與試題反應理論作法之比較。中國測驗學會測驗年刊,44輯1期,29-52頁。
2. 余民寧(民80):試題反應理論的介紹-測驗理論的發展趨勢(一)。研習資訊,8卷6期,13-17頁。
3. 何榮桂、姚漢禱(民85):評分量尺模式在運動技能測驗上的應用。中國測驗學會測驗年刊,43輯,141-152頁。
4. 林秀娟、林清山、張紹勳(民83):動態評量結合試題反應理論在空間視覺學習潛能評量之研究。中國測驗學會測驗年刊,41輯,73-108頁。
5. 林清和(民70):中華民國64年與67年台灣區運動會競技體操裁判評審分數客觀性的比較研究。體育學報,3輯,107-142頁。
6. 林清和(民76):中華民國台灣區運動會競技體操選手分數及裁判評審分數客觀性與一致性十年的追蹤研究。師大學報,32期,217-262頁。
7. 林德隆(民88):利用試題反應理論編製國中壘球擲準測驗。大專體育學刊,1卷2期,11-24頁。
8. 許樹淵(民82):1992年奧運會男體操賽裁判員評分一致性的探討。體育學報,15輯,163-180頁。
9. 黃國彥、王以仁(民76):潛在特質理論及其應用。中國測驗學會測驗年刊,34輯,147-158頁。
10. 楊昌雄(民89):第十三屆亞洲運動會舞蹈運動比賽裁判分析。中華體育季刊,13卷4期,36-43頁。
11. 顏智淵(民86):第廿二屆台灣區運動會韻律體操比賽裁判員評分一致性之探討。國立體育學院論叢,7卷2期,95-117頁。