跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許育嘉
研究生(外文):Yu-Chia Hsu
論文名稱:液體黏度對攪拌槽中之氣體分散的影響
論文名稱(外文):The Effect of Fluid Viscosity on Gas Dispersion in Stirred Tanks
指導教授:呂維明
指導教授(外文):Wei-Ming Lu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:94
中文關鍵詞:黏度攪拌槽氣體分散氣穴結構功率消耗盤式直葉攪拌翼計算流體力學黏性流體
外文關鍵詞:viscositystirred tankgas dispersioncavity structurepower consumptionRushton turbinecomputational fluid dynamicviscous fluid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:398
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究以光電毛細管配合CFX數值模擬來瞭解黏度對盤式直葉攪拌翼的氣體分散影響,所研究的氣穴主要為大氣穴。就整槽的觀點,隨著黏度的增加,在同轉速下液體所能處理的氣體量也會增加,氾濫點會延後出現。對於高黏度溶液,假如迴轉速夠大,在攪拌翼後方的氣穴結構就能發展的十分穩定,功率消耗曲線會十分靠近。若是迴轉速較低,或有氾濫的情形發生,其功率消耗曲線便會另成一區,與穩定狀態分成兩群。
利用模擬結果之壓力分佈圖來確定氣穴區與非氣穴區的範圍。隨著黏度的增加,氣穴周圍之紊流動能和剪應力大小隨著增加。氣穴邊緣處的紊流動能及剪應力大小相較於氣穴尾端之漩渦處為較小;由光電毛細管所量得之氣泡大小,亦符合計算所得之結果,可以驗證這個論點。

To investigate the effect of viscosity on gas dispersion mechanisms around the disc turbine, both the photoelectric capillary method and the numerical simulation techniques were adopted to analyze large cavity behind the blade. With the increase of the viscosity of the fluid, we can handle more gas under the same rotation speed. For high viscous fluid, the cavity structure will be very stable if the rotation speed is large enough. The power consumption curves are gathering very close. However, if the rotation speed is not large enough, the curves will separate into groups.
The interface between cavity and fluid is depicted by the pressure contours. Turbulent kinetic energy and shear stress around the cavity are increasing with the increase of viscosity. Turbulent kinetic energy and shear stress of the boundary of the cavity are smaller than those at the vortex at the end of the cavity. From the bubble size measured by the photoelectric capillary method, the computation results are proved reliable.

液體黏度對攪拌槽中之氣體分散的影響
THE EFFECT OF FLUID VISCOSITY ON GAS DISPERSION
IN STIRRED TANKS
目 錄
頁次
誌謝……………………………………………………….………………….…..I
中文摘要……………………………………………………………………….II
英文摘要……………………………………………………...……………….III
目錄……………………………………………………………..……………...IV
圖索引………………………………………………….…..………..…….…VIII
表索引………………………………………………………………..…………X
第一章緒論………………………………………………….………..…1
第二章文獻回顧…………………………………………..………..…5
2-1氣液攪拌槽內氣體分散機構之探討….……………..6
2-2高黏性流體氣液攪拌槽內之探討……………......10
2-2-1氣體分散與氣穴結構………………..…….....11
2-2-2氣體包含量………..…………………...……..15
2-2-3功率消耗………..……………………..……....17
2-3氣液攪拌槽內氣體分散機構之探討……….…….20
第三章 實驗裝置與實驗方法……………………………...…….25
3-1攪拌功率消耗之量測……………………………..…..25
3-1-1量測原理及方法………………..…….……....26
3-1-2量測裝置………..……………………...……..28
3-1-3實驗流程………..……………………...……..31
3-2 局部氣含量之量測……………………..……………31
3-2-1量測原理及方法………………..…….……....31
3-2-2量測裝置………..……………………...……..32
3-2-3抽裂氣泡的處理方式………..………...……..36
3-2-4實驗流程………..……………………...……..40
3-3實驗之流體及流體黏度之量測……..…………43
3-3-1量測原理及方法…………………..…….…....41
3-3-2量測裝置………..……………………...……..42
3-3-3實驗所用之液體………..……….……..……..44
第四章 以模擬方法研究黏度改變流場
對氣體分散之影響…………………………...……..…..46
4-1CFX流場計算流體…………………….…………46
4-1-1CFX之數值計算原理…………….….……….46
4-1-2CFX之數值計算方法……………….………..48
4-1-3紊流模式………..……….………...…...……..49
4-2各項條件設定…………………………………....53
4-2-1攪拌槽幾何條件…………….……………....……..50
4-2-2邊界條件……………………………………..…..51
4-2-3計算網格設定………………………………..…..51
4-2-4其他條件………………………………...…….…..52
4-3攪拌翼後方之氣穴結構分析……….…...…...….53
4-3-1攪拌翼附近之壓力分佈…………….…....……..54
4-3-2氣穴位置、幾何形狀及大小……….……..…..63
4-3-3氣穴各處之紊流動能…………………………65
4-3-4氣穴各處之剪應力大小………………………66
4-4黏度改變對氣體分散之影響………………….67
4-5結論………………………………………………..…69
第五章以實驗量測探討黏度對功率消耗
及氣體分散之影響……………......….71
5-1不同溶液之功率消耗曲線圖……...……….……71
5-2光電毛細管量測氣泡大小分佈………………...77
5-2.1光電毛細管之量測位置…………………....…..77
5-2.2氣泡大小分佈之量測結果………………..….…78
5-3結論…………………………….………..………….84
第六章結論………………………………………..……..…………….85
符號說明………………………………..……………………………………..87
參考文獻………………………………..……………………………………..89
中英對照……………………………………..…………………………….….93

參考文獻
AEA Technology, CFDS-FLOW3D: User Guide, AEA Industrial Technology, Harwell, Oxfordshire, U. K.(1994)
Arjunwadkar, S. J., K. Sarvanan, A. B. Pandit, and P. R. Kulkarni, “Gas Liquid Mass Transfer in Dual Impeller Bio-reactor”, BioChem. Eng. J., 1, 93 (1998)
Bakker, A., “Hydrodynamics of Stirred Gas-Liquid Dispersions”, Ph.D. Thesis, Delft Univ. of Technology, Delft, Netherlands(1991)
Barigou, M., and M. Greaves, “ A Capillary Suction Probe for Bubble Size Measurement”, Meas. Sci. Technol., 2, 318 (1991)
Bruijn, W., K. Van’t Riet, and J. M. Smith, “Power Consumption with Aerated Rushton Turbine”, Trans. Instn. Chem. Engrs. 52, p.88(1974)
Burgess, J. M. and P. H. Calderbank, “The Measurement of Bubble Parameters in Two-Phase Dispersions. 1: The Development of an Improved Probe Technique”,. Chem. Eng. Sci. 30, p.743(1975)
Calderbank. P. H., “Physical Rate Processes in Industrial Fermentation. Part 1.: The Interfacial Area in Gas-Liquid Contacting with Mechanical Agitation”, Trans. Instn. Chem. Engrs. 36, p.443(1958)
Chuang, N. Y., “Gas Dispersion Mechanism around Disc Turbine Impellers”, M. S. Thesis, N.T.U. Taipei, R.O.C.(1999)
Cui, Y. Q., R. G. J. M. Van Der Lans and K. C. A. M. Luyben, “Local Power Uptake in Gas-Liquid Systems with Single and Multiple Ruchton Turbine,” Chem. Eng. Sci., 51, p.2361, (1996)
Galindo, E., and A. W. Nienow, “Mixing of Highly Viscous Simulated Xanthan Fermentation Broths with the Lightnin A-315 Impeller”, Biotechnol, Prog., 8, p.233 (1992)
Galindo, E., and A. W. Nienow, “Performance of the Scaba 6SRGT Agitator in Mixing of Simulated Xanthan Gum Broths”, Chem. Eng. Technol., 16, p.100 (1993)
Gogate, P. R., A. A. Beenackers, and A. B. Pandit, “Multiple-inpellers systems with a special emphasis on bioreactors: a critical review”, Biochem. Eng. J., 6, p.109 (2000)
Greaves, M. and K. A. H. Kobbacy, “Measurement of Bubble Size Distribution in Turbulent Gas-Liquid Dispersions”, Chem. Eng. Res. Des. 62, p.3(1984)
Greaves, M., and M. Barigou, “The Internal Structure of Gas-Liquid Dispersion in a Stirred Reactor”, 6th Eur. Conf. On Mix., 313 (1988)
Ju, S. J., “Study on Turbulence in Aerated Stirred Tanks”, Ph. D. Dissertation, N. T. U., Taipei, R. O. C. (1986)
Kuboi, R., A.W. Nienow, and K. V. Allsford, “A Mulirpurpose Stirred Tank Facility for Flow Visualisation and Dual Impeller Power Measurement”, Chem. Eng. Commun., 22, p29. (1983)
Lee, K. C., K. Ng, and M. Yianneskis, “Sliding Mesh Predictions of the Flow around Rushton Impellers”, IChemE Symp. Ser. 140, p.47 (1998)
Lopesde Fiqueiredo, M. M. and P. H. Calderbank, “The Scale-up of Aerated Mixing Vessels for Specified Oxygen Dissolution Rates”, Chem. Eng. Sci., 34, 1333 (1979)
Lour, D. F., “Study on Gas-Dispersion Mechanism and Optimum Numbers of a Rushton Turbine Impeller”, M. S. Thesis, N.T.U. Taipei, R.O.C.(1988)
Lu, W. M. and B. S. Yang, “Effect of Blade Pitch on the Structure of the Trailing Vortex around Rushton Turbine Impellers”, Can. J. Chem. Engng 76(6), p.556(1998)
Lu, W. M. and C. L. Yao, “Power Consumption and Gas Dispersion in a Multi-Stage Rushton Turbine Impellers Stirred Tank”, J. C. I. Ch. E. 23(3), p.173(1992)
Lu, W. M. and C. M. Lee, “Turbulent Flow in Mechanical Stirred Vessels with Multiple Impeller (III)-Bubble Motion in Plant Scale Multiple Impeller Stirred Tanks”, J. C. I. Ch. E. 27(6) p.437(1996)
Lu, W. M. and H. T. Chiu, “Turbulent Flow in Mechanical Stirred Vessels with Multiple Impeller (II) Motion and Coalescence of Small Bubbles”, J. C. I. Ch. E. 26(6), p.411(1995)
Lu, W. M., H. T. Chiu and L. C. Lin, “Turbulent Flow in Mechanical Stirred Vessels with Multiple Impeller (I) Single Phase Flow”, J. C. I. Ch. E. 26(6), p.399(1995)
McFarlane, C. M., and A. W. Nienow, “Studies of High Solidity Ratio Hydrofoil Impellers for Aerated Boreactors. 4. Comparison of impellers Types”, Biotechnol. Prog., 12, p.9 (1996)
Metzner, A. B., R. H. Feehs,, H. L. Ramos, R. E. Otto, and J. D. Tuthill, “Agitation of Viscous Newtonian and Non-Newtonian Fluids”, AIChE, 7, p.3, (1961)
Miner, C. S., and N. N. Dalton, “Glycerol”, Reinhold Publishing Corporation, New York, USA, p.238 (1953)
Moo-Young, M. and H. W. Blanch, “Design of Biochemical Reactor Mass Transfer Criteria for Simple and Complex Systems,” Advances in Biochemical Engineering, 19, p.40 (1981)
Nagase, Y. and H. Yusui, “Fluid Motion and Mixing in a Gas-Liquid Contactor with Turbine Agitators”, Chem. Eng. J. 27, p.37(1983)
Nagata, S., M. Nishikawa, A. Inoue, and Y. Okamoto, “turbulense in Non-Baffled Mixing Verssel”, J. Chem. Eng. Japan, 8(3), p.243 (1975)
Nienow, A. W. and D. J. Wisdom, “Flow over Disc Turbine Blade”, Chem. Eng. Sci. 29, p.1994(1974)
Nienow, A. W., D. J. Wisdom, and J. C. Middleton, “The Effect of Scale and Geometry on Flooding, Recirculation and Power in Stirred Vessels”, Proc. 2nd Euro. Conf. On Mixing, F1-1(1977)
Nienow, A. W., D. J. Wisdom, And J. Solomon, “The Effect of Rheological Complexities on Power Consumption in an Aerated Agitated Vessel”, Chem. Eng. Commun., 19, p.273 (1983)
Nienow, A. W., K. V. Allsford, and R. Kuboi, “Using a Derotational Prism for Studying Gas Dispersion Processess.”, Paper to Eng. Found. Conf. On Mixing, Henniker, NewYork (1983a)
Nienow, A. W., R. Kuboi, C. M. Chapman, and K. V. Allsford, “The Dispersion of Gases into Liquids by Mixed Flow Agitators”, Proc. Int. Conf. on Physical Modeling of Multiphase Flows., BHRA Fluid Engineering, Cranfield, Bedford, England, p.417 (1983b)
Nienow, A. W., D, J. Wisdom, J. Solomon, V. Machon, and J. Vlcek, “The Effect of Rheological Complexities on Power Consumption in an Aerated Agitated Vessel”, Chem. Eng. Commun., 19, 273 (1983c)
Nienow, A. W., K. V. Allsford, and R. Kuboi, “The Effect of Rheological Properties on Gas-filled Cavity Formation When Dispersing Gas with Rotating Stirrers at Reynoulds Number <1000”, Paper to Conf. on Eng. Rheology, London, England(1983d)
Nienow, A. W., “Gas Dispersion Performance in Fermenter Operation”, Chem. Eng. Prog., Feb, p.61, (1990)
Nocentini, M., D. Faijner, G. Pasquali, and F. Majeli, “Gas-Liquid Mass Transfer and Hold-up in Vessels Stirred with Multiple Rushton Turbines: Water and Water-Glycerol Solution”, Ind. Eng. Chem. Res., 32, 19 (1993)
Parthasaratrhy, N. and N. Ahmed, “Gas Hold-up in Stirred Vessels: Bubble Size and Power Input Effects”, Proc. 7th Euro. Conf. Mixing, p.295(1991)
Penelli, D., M. Nocentini, and F. Magelli, “Hold-up in Low Viscosity Gas-Liquid Systems Stirred with Multiple-Impellers: Comparison of Different Agitator Types and Sets”, Proc. Eur. Conf. Mix., 8, 81 (1994)
Penelli, D., and F. Magelli, “Analysis of the Fluid Dynamic Behavior of the Liquid and Gas Phases in Reactors Stirred with Multiple Hydrofoil Impellers”, Ind. Eng. Chem. Res,, 39, p.3202 (2000)
Ranade V. V., J. B. Joshi, “Flow Generated by a Disc-Turbine; Part 1: Experimental Trans IChemE 60, p.19 (1990)
Randall, E. W., C. M. Goodall, P. M. Faurlamb, L. Dold, and C. C. T. O’connor, “A Method for Meaduring the sizes of Bubbles in Two- and Three-Phase Systems”, J. Phys. E. Sci. Instrum. 22, p.827(1989)
Renade, V. R. and J. J. Ulbrecht, “Gas Dispersion in Agitated Inelastic and Viscoelastic Liquids”, Proc. 2nd Eur. Mix Conf., BHRA Fluid Engineering, p.F6-83 (1977)
Rennie, J. and F. H. H. Valentin, “Gas Dispersion in Agigated Tanks”, Chem. Eng. Sci. 23, p.663(1968)
Shamlou, P. A., and M. F. Edwards, “Power Consumption of Anchor Impellers in Newtonian and non-Newtonian Liquids”, Chem. Eng. Res. Des., Sep., p.537, (1989)
Smith, J. M., K. Van’t Riet, and J. C. Middleton, “Scale-up of Agitated Gas-Liquid Reactors for Mass Transfer”, Proc. 2nd Europ. Conf on Mixing, F4-51(1977)
Smith, J. M. and M. M. C. G. Warmoeskerken, “The Dispersion of Gases in Liquids with Turbines”, Proc. 5th Euro. Conf. On Mixing, p.115(1985)
Solomon, J., A. W. Nienow, and G. W. Pace, Flow Patterns in Agitated Plastic and Psudoplastic Viscolelstic Fluids, in Fluid Mixing, I, Chem. E. Symp. Ser., No. 64. p.A1
Takahashi, K. and A. W. Nienow, “ Vortex Cavity and the Associated Path-Line of Discharged Bubbles in an Aerated Vessel Agitated by a Rushton Turbine”, J. Chem. Engineer. Japan 25(5), p.539(1992)
Tanguy, P. A., F. Thibault, E. B. L. Fuente, T. E. Solaresm, and A. Tecante, “Mixing Performance Induced by Coaxial Flat Blade-Helical Ribbon Impellers Rotating at Different Speeds”, Chem. Eng. Sci., 52, p.1733 (1997)
Torrez, C., and C. Andre, “Power Consumption of a Rushton Turbine Mixing Viscous Newtonian and Shear-Thinning Fluids: Comparison Between Bxperimental and Numericla Results”, Chem. Eng. Technol., 21, p.599, (1998)
Ulbrecht, J. J., and G. K. Petterson,”Mixing of Liquids by Mechanical Agitation.”, Gordon and Breach Science Publishers, New York, USA, p.93 (1985)
Van’t Riet K., and J. Smith, “The Behavior of Gas-Liquid Mixtures Near Rushton Turbine Blades”, Chem. Eng. Sci. 28, p.1031(1973)
Van’t Riet, K. and J. M. Smith, “The Trailing Vortex System Produced by Rushton Turbine Agitator”, Chem. Eng. Sci. 30, p.1093(1975)
Vlaev, S. D., and M. Martinov, “Non-Uniformity of Gas Dispersion in Turine-Generated Viscoelastic Circulation Flow.”, Can. J. of Chem. Eng., 76, p.405, (1998)
Wang, J. J., L. F. Feng, X. P. Gu, K. Wang, and C. H. Hu, “Power Consumption of Inner-Outer Helical Ribbon Impellers in Viscous Newtonian and non-Newtonian Fluids”, Chem. Eng. Sci., 55, p.2339 (2000)
Wang, J. Y., “Power Consumption in Multi-Impeller Aerated Vessels”, M. S. Thesis, N.T.U. Taipei, R.O.C.(1998)
Weiland, P., “Measurement of Bubble size Distribution in Fermentation Media Using a Photoelectric Probe”, Ger Chem. Eng. 3, p.296(1980)
Wu, H. Z., “Studies on the Hydrodynamics of Multiple Impeller Gas-Liquid Contactors”, Ph. D. Dissertation, N. T. U., Taipei, R. O. C. (2000)
Zhang, Z. B., G. Dai, and M. H. Chen, “A Study on Bubble-Size Distribution in an Aerated Stirred Vessel”, J. Chem. Ind. Engr. China, 2, 183 (1989)
Zhou, G., P. A. Tanguy, and C. Dubois, “Power Consumption in a Double Planetary Mixer with non-Newtonian and Viscoelastic Materials”, Trans IchemE, 78, part A, p.445, (2000)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top