(34.201.11.222) 您好!臺灣時間:2021/02/25 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:游靜如
研究生(外文):Yu Ching Ju
論文名稱:利用陽極處理改善α2-Ti3Al基介金屬抗氧化性之研究
指導教授:吳錫侃
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:陽極處理磷酸及磷酸+矽酸鈉溶液α2-Ti3Al(α2+γ)-鈦鋁介金屬Ti-6Al-4V
外文關鍵詞:anodizationphosphoric acidphosphoric acid with sodium silicatetitanium aluminium intermetallics
相關次數:
  • 被引用被引用:1
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本實驗針對α2-Ti3Al、(α2+γ)-Ti60Al40、(α2+γ)-Ti53Al47、γ-TiAl等四種介金屬與Ti-6Al-4V金屬,在18oC的磷酸水溶液與磷酸+矽酸鈉水溶液中,外加不同電壓進行陽極處理,並研究其抗高溫氧化性的改善。在磷酸溶液方面,可大幅的降低(α2+γ)-Ti60Al40、(α2+γ)-Ti53Al47及γ-TiAl鈦鋁介金屬在800oC的氧化,且其抗高溫氧化性的改善程度會隨著處理直流電壓的增加而增加,其改善程度達2~3個級數。在磷酸+矽酸鈉溶液方面,對α2-Ti3Al、(α2+γ)-Ti60Al40、(α2+γ)-Ti53Al47、γ-TiAl與Ti-6Al-4V等均可有效地改善其抗高溫氧化性,改善程度亦可達到1~3個級數。在陽極處理過程中,處理電壓愈高,則陽極膜表面就愈粗糙。所產生的陽極膜是非晶質,而且含有不少的磷。其改善高溫氧化的原因,可歸因於磷離子摻雜於氧化鈦所導致的氧化鈦內氧缺陷的減少,以及氧化膜中的矽於高溫氧化過程中產生SiO2保護層。
The oxidation resistance of α2-Ti3Al、(α2+γ)-Ti60Al40、(α2+γ)-Ti53Al47、γ-TiAl and Ti-6Al-4V alloys has been improved by the anodic coating at various voltages in 18oC phosphoric acid aqueous solution and/or in phosphoric acid with an addition of sodium silicate aqueous solution. In the phosphoric acid, the 800oC oxidation resistance of (α2+γ)-Ti60Al40、(α2+γ)-Ti53Al47、γ-TiAl can be improved by the anodic coating to 2~3 order and the improvement increases with increasing the anodizing voltage. In the phosphoric acid with an addition of sodium silicate aqueous solution, the 800oC oxidation resistance can be improved by the anodic coating to 1~3 order. Experimental results show that the higher the voltage is applied, the more the rugged surface is formed. The anodic films formed at various voltages are amorphous and contents a lots of phosphorus and silicate atoms. The improvement against high temperature oxidation is attributable to the formation of protective SiO2 layer and the reduce of oxygen vacancies in the titania, resulting from the doping effect of phosphorus ions in the anodic films.
中文摘要
英文摘要
第一章前言
第二章文獻探討
2-1 TiAl系列介金屬之發展
2-2 TiAl合金之氧化
2-2-1 TiAl合金之氧化動力學
2-2-2 TiAl合金之氧化機構
2-2-3 Z Phase
2-2-4 合金表面處理對氧化的影響
2-3 TiAl合金高溫抗氧化性之改善
2-3-1 添加合金元素
2-3-2 表面處理-擴散障礙層的塗佈
2-3-3 表面處理-陽極處理
第三章實驗方法
3-1 合金熔煉
3-2 均質化處理
3-3 試片成分分析
3-4 試片處理
3-5 陽極處理
3-6 TGA氧化試驗
3-7 熱循環氧化試驗
3-8 XRD分析
3-9 金相顯微組織觀察
3-10 EPMA分析
第四章α2-Ti3Al實驗結果與討論
4-1 4wt%磷酸溶液
4-1-1 陽極處理實驗結果
4-1-2 高溫循環氧化試驗結果
4-2 50g/L磷酸+30g/L矽酸鈉溶液
4-2-1 陽極處理實驗結果
4-2-2 高溫循環氧化試驗結果
4-3 結論
第五章(α2+γ)-Ti60Al40實驗結果與討論
5-1 50g/L磷酸溶液
5-1-1 陽極處理實驗結果
5-1-2 高溫循環氧化試驗結果
5-2 50g/L磷酸+30g/L矽酸鈉溶液
5-2-1 陽極處理實驗結果
5-2-2 高溫循環氧化試驗結果
5-3 結論
第六章(α2+γ)-Ti53Al47實驗結果與討論
6-1 50g/L磷酸溶液
6-1-1 陽極處理實驗結果
6-1-2循環氧化試驗結果
6-2 50g/L磷酸+30g/L矽酸鈉溶液
6-2-1 陽極處理實驗結果
6-2-2 高溫循環氧化試驗結果
6-3 結論
第七章γ-TiAl 實驗結果與討論
7-1 50g/L磷酸+30g/L矽酸鈉溶液
7-1-1 陽極處理實驗結果
7-1-2 高溫循環氧化試驗結果
7-2 4wt%磷酸溶液
7-3 結論
第八章Ti-6Al-4V 實驗結果與討論
8-1 50g/L磷酸+5g/L矽酸鈉溶液
8-1-1 陽極處理實驗結果
8-1-2 高溫循環氧化試驗結果
8-2 結論
第九章 結論
參考文獻
1. M. Yamaguchi, H. Inui, Structural Intermetallics, TMS, (1993)127.
2. Y.W. Kim, JOM, 46 (1994) 30.
3. M. Yamaguchi, Y. Umakoshi, T. Yamane, Proc. of MRS, (1987) 81.
4. M. Fukaya, P.Z. Zhao, T. Kozakai and T. Miyazaki, JOM, 25(1990) 522.
5. E.P. George, M. Yamaguchi, K.S. Kumar and C.T. Liu, Annu. Rev. Mater. Sci., 24 (1994) 409.
3. M. Yamaguchi, Y. Umakoshi and T. Yamane, Proc. MRS, 1987, p.81.
6. D.M. Dimiduk, D.B. Miracle, Y.W. Kim, M.G. Mendiratta, ISIJ International 31(10) (1991) 1223.
7. F. Zhang, S.L. Chen, Y.A. Chang, and U.R. Kattner, Intermetallics 5 (1997) 471.
8. R. Kainuma, Y. Fujita, H. Mitsui, I Ohnuma, K. Ishida, Intermetallics 8 (2000) 855.
9. S.C. Huang, E.L. Hall and M.F.X. Gigliotti, High-Temperature Ordered Intermetallic Alloy II, ed. N.S. Stoloff, CC.Koch, C.T. Liu and O. Izumi (Pittsburgh, PA:MRS, 1987), p.481.
10. J.L. Murray, Binary Phase Diagram, ed. T.B. Massalski (Metals Park, OH: ASM, 1986), p.173.
11. D.M. Dimiduk, D.B. Miracle and C.H. Ward, Mater. Sci. Tech. 8(4) (1992) 367.
12. F. Appel, R. Wagner, Mater. Sci. Eng. R22 (1998) 187.
13. H.A. Lipsitt, D. Shechtman, and R.E. Schafrik, Metall. Trans. A, 6A (1975) 1975.
14. Y.W. Kim, JOM, July, (1989) 24.
15. J.D. Sunderkötter, H.J. Schmutzler, V.A.C. Haanappel, R. Hofman, W. Glatz, H. Clemens and M.F. Stroosnijder, Intermetallics 5(7) (1997) 525.
16. Y. M. Kim, High Temp. Ordered Intermetallic IV, MRS, (1991) 777.
17. S.C. Huang, D.S. Shih, Microstructure/Property Relationship in Titanium Aluminide and Alloys, ed. Y.W. Kim and R.R. Boyer, 1990, p105-122.
18. H.A. Lipsitt, Proc. MRS. Sym., 39 (1985) 35.
19. Y. W. Kim, JOM,, 41 (1989) 24.
20. Y.W. Kim, Acta Metall. Mater., 40 (1992) 121.
21. S.C. Huang and E.L. Hall, Higher Temperature Ordered Intermetallic Alloys III (Pittsburg, MRS, (1989) 373.
22. M.J. Blackburn et al, US patent 4,294,615 (1981).
23. M.J. Blackburn and M.P. Smith, Air Force Materials Lab. Report, AFWAL-TR-80-4175(1980).
24. C. Wagner, Z. Elektrochem., 63 (1959) 772.
25. I. Yuhki et al., Proc. 1993 Yokohama Meeting (Sendai, Japan, JIM) (1993) 334.
26. Y.W. Kim, Research in Progress, (1991-94).
27. Private Communication, Aero-Mat./CSIST, ROC, (1987).
28. I.C.I Okafor and R.G. Reddy, JOM, June (1999) 35.
29. A. Rahmel and P.J. Spencer, Oxid. Meta. 35 (1991) 53.
30. S. Taniguchi, T. Shibata and S. Itoh, Mater. Trans. JIM, 32(2) (1991) 151.
31. G. Welsch and A.I. Kahveci, “Oxidation behaviou of titanium lauminide alloys”, in Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.207.
32. M. Schmitz-Niederau and M. Schütze, Oxid. Meta., 52(3/4) (1999) 225.
33. Y. Umakoshi et al., J. Mater. Sci., 24 (1989) 1599.
34. Y.C. Hsu, S.K. Wu and R.Y. Lin, Materials Chemistry and Physics, 49 (1997) 184.
35.Y.C. Hsu, Ph.D Thesis, Institute of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan, 1996.
36. G.H. Meier and F.S. Pettit, Mater. Sci. Eng., A153 (1992) 548.
37. R.A. Perkins and K.T Chiang, and G.H. Meier, Scripta Metall. Mater., 21 (1987) 1505.
38. G.H. Meier etal., Oxidation of High-Temperature Intermetallics, edited by T. Grobstein and J. Doychak, The Mineral, Metals & Materials Society, 1989, p.185.
39. Y. Shida and H. Anada, Mater. Trans. JIM, 34(3) (1993) 236.
40. A. Rahmel, W.J. Quadakkers, M. Schütze, Werkstoffe und Korrosion, 46 (1995) 271.
41. M.G. Fontana, Corrosion Engineering, McGraw-Hill, Inc, New York, 1986, p. 513.
42. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Pub. Ltd, New York, 1988, p.163.
43. K.Maki, M.Shioda and M. Sayashi, T. Shimizu and S. Isobe, Mater. Sci. Eng., A153 (1992) 591.
44. P. Kofstad, High-temperature Oxidation of Metals, Wiley, New York, 1966.
45. M.R. Shanabarger, Mater. Sci. Eng., A153 (1992) 608.
46. R.A. Outlaw, W.S. Lee, S.N. Sankaran, D. Wu, and R.K. Clark, Scripta Met, et Mater., 24 (1990) 171.
47. J.M. Rakowski, F.S. Pettit, G.H. Meier, F. Dettenwanger, E. Schumann and M. Ruhle, Scripta Metall. et Mater., 33(6) (1995) 997.
48. V.A.C. Haanappel, J.D. Sunderkötter and M.F. Stroosnijder, Intermetallics, 7 (1999) 529.
49. F. Dettenwanger, E. Schumann, M. Rühle, J. Rakowski, and G.H. Meier, Oxid. Meta., 50(3/4) (1998) 269.
50. H. Hindam and D.P. Whittle, Oxid. Meta., 18(5/6) (1982) 245.
51. T. Shimizu, T. Iikubo and S. Isobe, A153 (1992) 602.
52. N. Zheng, W. Fischer, H. Grübmeier, V. Shemet, W.J. Quadakkers, Scripta Metallurgica et Materialia, 33(1) (1995) 47.
53. S. Becker, A. Rahmel, M. Schorr, and M. Schütze, Oxid. Meta., 38 (1992) 425.
54. N. Zheng W.J. Quadakkers, A. Gil, and H. Nickel, Oxid. Meta., 44(5/6) (1995) 477.
55. N.S. Choudhury, H.C. Gradham and J.W. Hinze, Oxidation behavior of titanium alumnides, in Z.A. Foroulis and F.S Pettit (eds), Properties of High Temperature Alloys, Electrochemical Society, London, 1976, p. 668.
56. Z. Yao and M. Marek, Mater. Sci. Eng. A192 (1995) 995.
57. M. Kumagai, K. Shibue, M.-S. Kim and M. Yonemitsu, Intermetallics 4 (1996) 557.
58. W.E. Dowling, Jr. and W.T. Donlon, Scripta Metall. Mater., 27 (1992) 1663.
59. R.W. Beye, and R. Gronsky, Acta. Metall. Mater. 42, (1994) 1373.
60. R. Beye, M. Verwerft, J.T.M. De Hosson and R. Gronsky, Acta Mater., 44 (1996) 4225.
61. V. Shemet, P. Karduck, H. Hoven, B. Grushko, W. Fischer, and W.J. Quadakkers, Intermetallics, 5 (1997) 271.
62. E.H. Copland, B. Gleeson and D.J. Young, Acta Mater., 47 (1999) 2937.
63. V. Shemet, H. Hoven and W.J. Quadakkers, Intermetallics, 5 (1997) 311.
64. Y.F. Cheng, F. Dettenwanger, J. Mayer, E. Schumann and M. Rühle, Scripta Metall. Mater., 34 (1996) 707.
65. F. Dettenwanger, E. Schumann, J. Rakowski, G.H. Meier and M. Rühle, Mater. And Corr., 48 (1996) 23.
66. E. Abe, M. Ohnuma and M. Nakamura, Acta Mater., 47 (1999) 3607.
67. J.M. Rakowski, G.H. Meier, F.S. Pettit, F. Dettenwanger, E. Schumann and M. Rühle, Scripta Metall. Mater., 35 (1996) 1417.
68. S.A. Kekare and P.B. Aswath, J. Mater. Sci, 32 (1997) 2485.
69. R.A. Perkins, K.T. Chiang, G.H. Meier, R. Miller, Oxidation of High-Temperature Intermetallics, Ed. T. Grobstein and J. Doychak, TMS, 1989, p157.
70. Y. Muramatsu, K. Honma, A. Miyazaki, K. Funami, J. of the Japan, Insti. of Metal, 60(11) (1996) 1116.
71. S. Taniguchi, H. Juso, T. Shibata, Mater. Trans. JIM, 37(3) (1996) 245.
72. Y. Shida, H. Anada, Oxidation of Metals, 45(1-2) (1996) 197.
73. D. Banejee, A.K. Gogia, T.K. Nandy, K. Muraleedharan and R.S. Mishra, Structural Intermetallics, Warendale, PA: TMS, (1993) p.19.
74. T. Tetsui, S. Ono, Intermetallics 7 (1999) 689.
75. B.G. Kim, G.M. Kim and C.J. Kim, Scripta Metall. et Mater. 33(7) (1995) 1117.
76. S. Taniguchi, T. Shibata, T. Saeki, H. Zhang and X. Liu, Mater. Trans. JIM, 37(5) (1996) 998.
77. H. Nickel, N. Zheng, A. Elschner, and W.J. Quadakkers, Mikrochimica Acta, 119 (1995) 23.
78. ABB Patent GmbH, US patent 5,393,356, Feb. 28, 1995.
79. M. Yoshihara and K. Miura, Intermetallics, 3 (1995) 357.
80. Y. Shida and H. Anada, Mater. Trans. JIM, 35(9) (1994) 623.
81. H. Anada and Y. Shida, Mater. Trans. JIM, 36(4) (1995) 533.
82. M. Yamaguchi, Mater. Sci. Tech., 8 (1992) 299.
83. S.C. Huang and E. L. Hall, “The effects of Cr additions of binary TiAl-base alloys”, Metallurgical Transations A, 22A, 1991, 2619-2627
84. F. Wang, Z. Tang and W. Wu, Oxid. Meta., 48(5/6) (1997) 381.
85. B. Y. Huang, Y.H. He, J.N. Wang, “Improvement in mechanical and oxidation properites of TiAl alloys with Sb additions”, Intermetallics 7 (1999) 881-888.
86. Y. Shida and H. Anada, Corrosion. Sci., 35(5-8) (1993) 945.
87. G. Schumacher, F. Dettenwanger, M. Schütze, U. Hornauer, E. Richter, E. Wieser, W. Möller, Intermetallics, 7 (1999) 1113.
88. M. Schnütze, M. Hald, Mater. Sci. Eng., A239-240 (1997) 847.
89. U. Hornauer, R. Günzel, H. Reuther, E. Richter, E. Wieser, W. Möller, G. Schumacher, F. Dettenwanger, M. Schütze, Surf. Coat. Tech. 125 (2000) 89.
90. Ikematsu, Y., Hanamura, T., Morikawa, H., Tanino, M. and Takamura, J., in Proc. Int. Symp. On Intermetallic Compounds (JIMIS-6), ed. O. Izumi, Japan Inst. Metals, Sendai, Japan, 1991, p.191.
91. W.B. Retallick, M.P. Brady and D.L. Humphrey, Intermetallics 6 (1998) 335.
92. W.B. Retallick, U.S. Patent No. 5,635,303, Jun. 3, 1997.
93. B.G. Mcmordie, Surface & Coating Tech., 49(1-3) (1991) 18.
94. R.P. Skowronski, J. Am. Ceram. Soc., 77(4) (1994) 1090.
95. I.C. Hsu and S.K.Wu, Surface and Coatings Technology, 909 (1997) 6.
96. C.L. Chu, S.K. Wu, Surface & Coating Tech., 78(1-3) (1996) 211.
97. X.H. Liu, X. Wang, B.Y. Jiang, Y.J. Yang, D. Xu, Z.H. Zheng, H. Zhu, Z.X. Lin, S.C. Zou, Surface & Coating Tech., 66(1-3) 1994 271.
98 D. Xu, Z.H. Zheng, X.H. Liu, S.C. Zou, S. Taniguchi, T. Shibata, T. Yamada, Surface & Coatings Tech., 66(1-3) (1994) 486.
99. H.J. Schmutzler, N. Zheng, W.J. Quadakkers, M.F. Stroosnijder, Surface & Coating Tech., 83(1-3) (1996) 212.
100. M.F. Stroosnijder, N. Zheng, W.J. Quadakkers, R. Hofman, A. Gil, F. Lanza, Oxidation of Metals, 46(1-2) (1996) 19.
101. T. Noda, M. Okabe, S. Isobe,, Mater. Sci. and Eng. A-Structure Mater. Properties Microstructure and Processing, 213(1-2) (1996) 157.
102. H. Shalaby, US. Patent no. 5,695,827, Dec. 9, 1997.
103. J.H. Chern Lin, S.K. Lo, C.P. Ju, J. Oral Rehabilitation, 23 (1996) 129.
104. V.F. Henley, Anodic oxidation of aluminium & its alloys, Pergamon Press,4th ed., 1982.
105. G.C.Wood, J.P. O’Sullivan and B.Vaszko, J. Electrochem. Soc., 115(6) (1968) 618.
106. C. Crevecoeurs and H.J. de Wit, J. Electrochem. Soc., 134 (1987) 808.
107. C.T. Chen and G.A. Hutchins, J. Electrochem. Soc., 132 (1985) 1567.
108. Pinner, The Surface Treatment and Finishing of Aluminum, 4th ed., Robert Draper Ltd., 1971, p. 292.
109. M.E. Sibert, J. Electrochemical Society, 110(1) (1963) 65.
110. P. Kofstad, High Temperature Corrosion, Elsevier Applied Science Pub. Ltd, New York, 1988, p.132.
111. 楊木榮台大材料所博士論文(民國89年)
112. J.S. Wu, L.T. Zhang, F. Wang, K. Jiang, G.H. Qiu, Intermetallics 8 (2000) 19-28.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔