跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張秀如
研究生(外文):chang, hsiu-ju
論文名稱:金屬-氧化矽-矽異質結構與氧化矽奈米管之光電研究
論文名稱(外文):Optical and electrical properties of Silicon dioxide nanotube and Metal-oxide-silicon heterostructures
指導教授:陳永芳陳永芳引用關係
指導教授(外文):Y. F. Chen
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理學研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:89
中文關鍵詞:中孔洞沸石金屬-氧化矽-矽光激螢光電激螢光
外文關鍵詞:MCM41mosphotoluminescenceelectroluminescence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:144
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
在本論文中,我們詳細的研究了氧化矽奈米管與金屬氧-化矽-矽異質結構光學與電學的性質。
Ⅰ. 氧化矽奈米管
首先,我們利用光激螢光光譜和傅立葉轉換遠紅外光吸收光譜的測量來探討氧化矽奈米管的光學性質。從我們的結果中發現,此樣品在氮氣的環境下退火後,其光激螢光光譜訊號會有增強的現象。我們更由傅立葉轉換遠紅外光吸收光譜的測量結果中知道此發光範圍是由於表面化合物Si-OH的鍵結所造成。此外,我們更由變溫的光激螢光光譜得知氧化矽奈米管的表面有Si-OH的振動模式。這樣的結果也從最近的文獻中得到驗證。最後,我們發現此氧化矽奈米管還有持續性光激螢光現象,而根據先前的文獻中得知和表面化合物Si-OH的鍵結有關係。所以我們成功的解釋氧化矽奈米管的光學性質。
Ⅱ. 金屬-氧化矽-矽
接著,我們利用光激螢光光譜,電激螢光光譜和光電導的測量來探討金屬氧化矽矽異質結構光學與電學的性質。經由光激螢光光譜和光電導測量分析後發現,樣品的發光機制是來自於氧化矽和矽介面之間的侷限態。除此之外,我們還發現樣品的光學性質中還有能隙再歸一以及雙激子的特性,而這些效應都是來自於載子聚積在氧化矽和矽介面之間的侷限態的緣故。

Abstract
In this thesis, we present detailed studies of optical and electrical properties of silicon dioxide nanotubes and metal-oxide-silicon heterostructures.
Ⅰ. Silicon dioxide nanotube (MCM-41)
The optical studies of SiO2 mesoporous materials with hierarchical tubules-within-tubule structure have been investigated by photoluminescence (PL) and Fourier transform infrared transmittance (FTIR). Our results suggest that the radiative intensity can be strongly enhanced by annealing the samples in N2 environment. From the FTIR spectra, we have pointed out that the origin responsible for the strong emission is Si-OH complexes located on nanotube surface. It has been observed that after turning off the pumping laser, the photoluminescence signal of SiO2 nanotubes can persist for several seconds, which is much longer than that of most materials performed under similar conditions. We have found that the decay of the photoluminescence signal is due to the quantum tunneling process.
Ⅱ. Metal-oxide-silicon (MOS) heterostructures
The optoelectrical properties of metal-oxide-semiconductor (MOS) for silicon heterostructures have been investigated by electroluminescence (EL), photoluminescence (PL) and photoconductivity (PC) spectroscopies. Through a detailed study of PL and PC spectra, we demonstrate that the localized states on SiO2/Si interface play an important role in determining the optical properties of Si-MOS structure. In addition, we discover the effect of band-gap renormalization and electron-hole plasma recombination in our measurements. We point out that the localization paves the path for the observation of these two effects, due to the accumulation of excited carriers on the localized states.

Contents
1.Introduction 8
1.1Mesoporous aluminosilicate MCM-41……………………..08
1.2Metal-oxide-semiconductor for silicon……………………10
1.3Reference………………………………………………………13
2.Techniques for optoelectronical measurem-
ents 15
2.1Photoluminescence (PL)…………………………………….15
2.2Electroluminescence (EL)…………………………………..35
2.3Photoconductivity (PC)……………………………………..39
2.4Reference………………………………………………………43
3.Strong visible Photoluminescence from SiO2 nanotubes at room temperature 45
3.1Introduction…………………………………………………..45
3.2Sample preparation…………..………………………………46
3.3Experiment…………………………………………………….52
3.4Results and discussion………………………………………52
3.5Summary……………………………………………………….60
3.6Reference………………………………………………………61
4.Mechanism of luminescence from metal-oxide- semiconductor for silicon heterostructures 63
4.1Introduction………………..…………………………………63
4.2Theoretical background…………………………………….64
4.3Sample preparation………..…….………………………….68
4.4Experiment……..…………….………………………………70
4.5Results and discussion……………………………………..71
4.6Summary………………………………………………………85
4.7Reference……………………………………………………..86
5.Conclusion 88

1.C. W. Lin, M. H. Lee, C. F. Liu, I. C. Lin and H. H. Lin, 1999 IEEE International Electron Devices Meeting, Washington, DC, December 1999.
2.C. F. Lin, C. W. Liu, M. J. Chen, M. H. Lee, and I. C. Lin, J. Appl. Phys.87, 8793 (2000).
3.C. W. Liu, M. J. Chen, I. C. Lin, M. H. Lee, and C. F. Lin, Appl. Phys, Lett. 77, 1111 (2000).
4.C. W. Liu, M. H. Lee, M. J. Chen and I. C. Lin, and C. F. Lin, Appl. Phys. Lett. 76, 1516 (2000).
5.C. W. Liu, W. T. Liu, M. H. Lee, W. S. Kuo and B. C. Hsu, Electron Device Lett. 21, 307 (2000).
6.R. Khatri, P. Asoka-Kumar and B. Nielsen, Appl. Phys, Lett. 65, 330 (1994).
7.K. Kasdama, F. Toyokawa, M. Tsukiji, M. Sakamoto, and K. Kobayashi, IEEE Trans. Nucl. Sci. NS-33, 1210 (1986).
8.A. E. Edwards and G. Germann, Nucl. Instrum. Methods B 32, 238 (1988).
9.C. F. Lin, C.W. Liu, M. J. Chen, M.H. Lee, and I.C. Lin, Journal of Physics: Condensed Matter, 12, L205, (2000).
10.N. O. Lipari, and M. Altarelli, Phys. Rev. B15, 4883 (1977).
11.T. Wang, H. Saeki, J. Bai and T. Shirahama, Appl. Phys. Lett. 76, 1737 (2000).
12.P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997).
13.Y. P. Varshni, Physica 34, 149 (1967).
14.C. W. Lin, M. H. Lee, M. J. Chen and I. C. Lin, IEEE Electron Devices lett. 21, 601 (2000).
15.T. Wang, J. Bai and S. Sakai, Appl. Phys. Lett. 78, 2617 (2001).
16.H. C. Yang, T. Y. Lin and Y. F. Chen, Appl. Phys, Lett. 78, 338 (2001).
17.D. A. Kleinman, Phys. Rev. B 28, 871 (1983).
18.R. Cingolani and K. Ploog, Adv. Phys. 40, 535 (1991).
19.T. Schmidt, G. Daniel and K. Lischka, J. Cryst. Growth 117, 748 (1992).
20.D. A. Kleinman, Phys. Rev. B32, 2266 (1985).
21.M. Combescot and P. Nozieres, J. Phys. CS, 2369 (1972).
22.J. Hubbard, Proc. R. Soc. London, Ser. A 243, 336 (1957).
23.Y. Kuramoto and H. Kamimura, J. Phys. Soc. Jpn. 37, 716 (1974).
24.T. M. Rice, in Solid State Physics, edited by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic, New York, 1977) 32, 1-86
25.D. A. Kleinman, Phys. Rev. B28, 871(1983).
26.K. F. Berggren and B. E. Sernelius, Phys. Rev. B24, 1971 (1981).
27.H. C. Casey, Frank Stern, J. Appl. Phys. 47, 631 (1976).
1. C. T. Kresge, W. J. Roth, J.C. Vartuli, and J. S. Beck, Nature
358,710 (1992).
2. A. Monnier, Q. Huo, D. Kumer, D. Margolese, R. S. Maxwell, G.
D. Stucky, M. Krishnamurty, P. Petroff, A. Firouzi, M. Janicke,
and B. F. Chmelka, Science 261,1299 (1993).
3. A. Firouzi, D. Kumer, T. Besier, P. Sieger, Q. Huo, S. A. Walker,
J. A. Zasadzinski, C. Glinka, J. Nicol, D. Margolese, G. D.
Stucky, and B. F. Chmelka, Science 267,1138 (1995).
4. H. P. Lin and C. Y. Mou, Science 273, 765 (1996).
5. Hong-Ping Lin, Soofin Cheng, and Chung-Yuan Mou,
Microporous Mater. 10, 111 (1997).
6. Mary E. Gimon-Kinsel, Kathy Groothuis, J. Kenneth, and Jr.
Balkus, Microporous and Mesoporous Mater. 20, 67 (1998).
7. H. P Lin, S. T. Wong, C. Y. Mou, C. Y. Tang, J. Phys. Chem. B,
38, 8967 (2000).
8. H. P. Lin, S. T. Wong, S. B. Liu, and C. Y. Mou, Stud. Surf. Sci.
Catal. 129, 15 (2000).
9. I. Umezu and K. Shibata, J. Appl. Phys. 84, 6448 (1998).
10. H. Tamura, Th. Wirschem, and S. Veprek, Appl. Phys. Lett. 65,
1537 (1994).
11. H. Tamura, Th. Wirschem, and S. Veprek, Thin Solid Films 255,
92 (1995).
12. L. T. Zhuravlev, Pure Appl. Chem. 61, 1969 (1989).
13. A. Anedda, G. Bongiovanni, M. Cannans, F. Cougiu and A.
Mura, J. Appl. Phys. 74, 923 (1993).
14. N. Ookubo and S. Sawada, Phys. Rev. B 51, 17526 (1996).
15. J. C. Fan, C. H. Chen, and Y. F. Chen, Appl. Phys. Lett. 72,
1605 (1998).
16. G. Socrates, Infrared Characteristic Group Frequencies, John Wiley & Sons, New York, 129, (1980).
17. G. Gu, W. Ding, and Youwei Du, Appl. Phys. Lett. 70, 2619
(1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top