跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/11 22:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝宜芳
研究生(外文):Hsieh Yi-Fang
論文名稱:不同脂質組合對微脂粒包覆率及安定性之影響
論文名稱(外文):The Encapsulation Efficiency and Stability of Liposomes Prepared with Various Lipid Compositions
指導教授:張鴻民張鴻民引用關係
指導教授(外文):Hung-Min Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:食品科技研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:90
中文關鍵詞:微脂粒微膠囊化磷脂質去水-復水法
外文關鍵詞:liposomemicroencapsulationphospholipiddehydration-rehydration method
相關次數:
  • 被引用被引用:6
  • 點閱點閱:1260
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
微脂粒是在1960年代首先由英國科學家班韓姆(A. Bangham)所發現的,它是一種由脂雙層所構成類似細胞膜的中空球體,可將我們所感興趣的不同成份包覆其中。由於其特殊的性質和構造,使得微脂粒廣泛應用於生物學、製藥學以及醫學等方面的研究上。
本研究的目的在於製備食品級的微脂粒,希望以分子量相近的脂肪酸如stearic acid和linoleic acid以及分子構型較大的tristearin來取代傳統配方中的膽固醇,以減低口服微脂粒時膽固醇的攝取量,並探討經不同配方改良後的微脂粒,與傳統配方在包覆率、長效性、對pH的安定性及對酵素安定性等方面的影響。
結果發現,以去水-復水法所製備出的微脂粒為多層微脂粒(Multilamellar vesicles,MLV)。在微脂粒包覆牛血清蛋白(bovine serum albumin,BSA)之包覆效率(encapsulation efficiency,EE)實驗中發現,在微脂粒中添加stearic acid組(EE:55%)與添加膽固醇組(51%)其包覆效率皆明顯優於未添加組(44%)。添加tristearin組則無論其添加量為何,其包覆率在統計上均與未添加組無顯著差異存在;而添加linoleic acid組,隨著添加量的增加,其包覆率反而下降。以微脂粒包覆葡萄糖水溶液時,添加膽固醇、stearic acid、tristearin組均可增加其包覆率,且在lecithin : stearic acid或tristearin為1 : 0.5時達到最高值。另外將微脂粒經多次凍乾-復水的處理過程後可有效增加其包覆效率。
將微脂粒置於不同pH值(pH 3~10)的緩衝溶液中,發現微脂粒存於pH 6時,其包覆物質有一最低的滲出率。四種不同配方中以添加膽固醇組對酸鹼度的耐受性最佳,添加stearic acid 組次之。
將微脂粒長期儲存於-20℃的環境下,發現其包覆物質滲出率比儲存於4℃時大,而在微脂粒中添加α-tocopherol可有效降低其TBA值及滲出率。四種配方的滲出率以添加tristearin組最大,而添加膽固醇組在各種儲存溫度下都最穩定。
將α-amylase經微脂粒包覆後,添加膽固醇組和添加stearic acid組均可有效保護內部所包覆的活性物質不受強酸(pH 2.8)和胃蛋白酶的傷害,而添加tristearin組則無保護效果。
綜合以上結果顯示,在四種微脂粒的實驗配方中,添加stearic acid組其包覆效率最佳、對氧化安定性最穩且長效安定性僅次於添加膽固醇組,因此stearic acid可用以取代膽固醇來製備食品級的微脂粒。
Liposomes were first found by English scientist Dr. A. Bangham in 1960’s. Their specifically hollow and spherical structures are made up with multilayer cell-membrane-like phosphobilayers and are capable of encapsulating materials of interests. Such specific characteristics of liposomes lead to their application researches in various fields such as biology, pharmaceutics and medical science.
In the present study, liposomes were prepared for food use with various ratios of lecithin to stearic acid, linoleic acid or tristearin, inplace of the currently used cholesterol, in order to avoiding the excessive intake of cholesterol, In addition, their physico-chemical properties such as encapsulation efficiency(EE, %)and stabilities against storage, pH and pepsin were investigated to optimize the composition.
Liposomes of multilamellar vesicles(MLVs)were successfully prepared with the dehydration-rehydration method, and the products prepared with the addition of stearic acid(EE : 55%)or cholesterol (51%)exhibited higher encapsulation efficiency of bovine serum albumin(BSA)than those prepared without addition of oil (44%), while those prepared with the addition of tristearin were insignificantly different with control, regardless of the amount of tristearin added. However, EE of BSA in liposomes decreased with the increasing amount of linoleic acid added. The EE of glucose in liposomes increased with the increasing level of cholesterol, stearic acid or tristearin added in liposomes, until a lecithin to stearic acid or tristearin ratio of 1:0.5 is reached, and then decreased. Besides, increasing dehydration-rehydration cycle in preparing liposomes was beneficial in increasing the EE.
Stability of liposomes against pH(pH 3 — 10) was determined by computing the released percentage of the encapsulated BSA. Results showed that liposomes at pH 6 were most stable, regardless of their compositions. Liposomes prepared with cholesterol added displayed the highest pH stability, followed by those prepared with stearic acid added.
Storage temperature was also influential on the released percentage of the encapsulated material. Storage at -20C exhibited more serious damage to the liposomes than at 4C. Addition of α-tocopherol was found effective in reducing the released percentage of encapsulated material by decreasing the TBA of the liposomes. Liposomes containing tristearin showed the highest released percentage, while those containing cholesterol were found stable during the 60-day storage at various temperatures.
Liposomes containing cholesterol or stearic acid were effective in protecting encapsulated α-amylase against acid (pH 2.8) and pepsin, while those containing tristearin were ineffective.
Among the four components tested, liposomes prepared with stearic acid added exhibited the highest EE and oxidation stability. Therefore, replacement of cholesterol by stearic acid in preparing liposomes for food use is feasible and recommended
目 錄
頁碼
中文摘要 ……………………………………………………Ⅰ
英文摘要 ……………………………………………………Ⅲ
前言 …………………………………………………….. 1
第Ⅰ章、文獻整理 ………………………………………… 3
一、 微脂粒(liposome)簡介 ………………………… 3
(1) 微脂粒的結構組成 ………………………… 3
(2) 微脂粒的分類 ……………………………….. 6
(3) 微脂粒的製備 ………………………………. 9
(4) 膽固醇添加對微脂粒的影響 ………………. 14
(5) 微脂粒於食品工業上的應用 ………………. 16
二、 微脂粒的包覆率 …………………………………. 19
三、 微脂粒的穩定性 …………………………………. 21
(1) 物理穩定性 ………………………………… 24
(2) 化學穩定性 ………………………………… 26
四、 微脂粒的長效性 ……………………………….…. 32
五、 膽固醇對人體的影響 ……………………………. .33
第Ⅱ章、材料與方法 …………………………………..…… 35
一、 藥品與器材 ……………………………………….. 35
(1) 藥品 ………………………………………… 35
(2) 器材 ………………………………………… 36
二、 儀器 ………………………………………………...37
三、 實驗方法 …………………………………………...38
(1) 微脂粒的製備 ……………………………….38
(2) 微脂粒的包覆率 …………………………… 39
(3) 蛋白質的定量 ……………………………… 39
(4) 微脂粒經多次凍乾-復水處理後之包覆率…42
(5) 葡萄糖的定量 ……………………………… 42
(6) 微脂粒的安定性 …………………………… 42
(7) pH值對微脂粒穩定性之影響 …………… 43
(8) 微脂粒的氧化 ……………………………….43
(9) 胃蛋白酶水解測定 ………………………….44
(10)α- amylase酵素活性分析 …………………44
(11)統計分析 …………………………………47
第Ⅲ章、結果與討論 ……………………………………….. 48
一、 微脂粒的包覆率 ………………………………….. 48
二、 微脂粒對不同pH值之耐受性 ……………………55
三、 微脂粒的粒徑分布 ………………………………...58
四、 微脂粒的長效性 …………………………………...64
五、 α-amylase經微脂粒包覆後對胃蛋白酶之耐受性 74
第Ⅳ章、結論 …………………………………………………78
第Ⅴ章、參考文獻 ……………………………………………80
王藹君,1998。醫藥用微脂粒之技術現況與展望。化工資訊。12:67-74。
王蓓林,1997。影響微脂粒穩定性因子之探討-氟碳化合物的添加。國立中央大學化學工程研究所碩士論文。
王振熙,1995。微膠囊與微膠囊包覆技術。化工。42(2):28-40。
余秀瑛,1996。微脂粒在醫藥方面之應用。醫學繼續教育。6:584-587。
吳玲玲譯,1993。微脂粒面面觀。科學月刊。24(9):692-700。
張世明,1992。脂肪微粒微膠囊技術在食品上之應用。食品工業。24(9) : 53-59。
張富雄,1997。微脂粒的運用與展望。楓城研發報導。3:12-14。
趙崇良、趙重舜,1994。微脂粒的原理與醫學應用。內科學誌。5:69-79。
李陽春,1999。以幽門螺旋桿菌(Helicobater pylori)之尿素酶免疫處理雞所產雞蛋蛋黃微膠囊化後抗體的安定性研究。國立台灣大學食品科技研究所碩士論文。
胡維正,1999。抑制血管收縮素轉化酶寡胜肽的合成及微脂粒之製備對天生高血壓鼠之抗高血壓作用。國立台灣大學食品科技研究所碩士論文。
Arakane, K., Hayashi, K., Naito, N., Nagano, T. and Hirobe, M. 1995. pH lowering in liposomal dispersions induced by phospholipid peroxidation. Chem. Pharm. Bull. 43:1755-1758.
Armengol, X. and Estelrich, J. 1995. Physical stability of different liposome compositions obtained by extrusion method. J. Microencapsulation 12:525-535.
Arnaud, J. P. 1998. Liposome-based functional drinks. Agro-Food-Industry Hi-Tech, Mar./Apr. 37-40.
Bangham, A. D., Standish, M. M. and Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13:238-247.
Bangham, A. D., Hill, H. W. and Miller, N. G. A. 1974. Preparation and use of liposome as models of biological membranes. J. Methods Membrane Biol.
1:1-68.
Betageri, G. V. and Parsons, D. L. 1992. Drug encapsulation and release from multilamellar and unilamellar liposomes. Int. J. Pharm. 81:235-241.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248.
Buboltz, J. T. and Feigenson, G. W. 1999. A novel strategy for the preparation of liposomes : rapid solvent exchange. Biochim. Biophy. Acta. 1417:232-245.
Crommelin, D. J. A. and Bommel, E. M. G. 1984. Stability of liposomes on storage : freeze dried, frozen or as an aqueous dispersion. Pharm. Res. 159-164.
De Kruijff B., Cullis, P. R. and Radda, G. K. 1976. Outside-inside distributions and sizes of mixed phosphatidylcholine-cholesterol vesicles. Biochim. Biophys. Acta. 436:729-740.
Dekruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., van Echteld, C. J. A., Taraschi, T. F., van Hoogevest, P., Killian, J. A., Rietveld, A. and van der Steen, A. T. M. 1985. Modulation of lipid polymorphism by lipid protein interactions. In:progress in lipid-protein interaction, A. Watts and J. J. de pont, Elsevier.
Dziezak, J. D. 1988. Microencapsulation and encapsulated ingredients. Food Tech. April :136-151.
Fransen, G. J., Salemink, P. J. M. and Crommelin, D. J. A. 1986. Critical parameters in freezing of liposomes. Int. J. Pharm. 33:27-35.
Freeman, R. and Finean, J. B. 1975. Cholesterol:lecithin association at molecular ratios of up to 2:1. Chem. PHY. Lipids 14:313-320.
Fukuzawa, K., Inokami, Y., Tokumura, A., Terap, J. and Suzuki, A. 1998. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and α-tocopherol in liposome. Lipids. 33:751-756.
Gaber, M. H. 1998. Effect of bovine serum on the phase transition temperature of cholesterol-containing liposomes. J. Microencapsulation 15:207-214.
Gier, J. D., Mandersloot, J. G. and Deenen, L. L. M. V. 1968. Lipid composition and permeability of liposomes. Biochim. Biophy. Acta. 150:666-675.
Grit, M. and Crommelin, D. J. A. 1992. The effect of aging on the physical stability of liposome dispersions. Chem. Phys. Lipids 62:113-122.
Grit, M., Underberg, W. J. M. and Crommelin, D. J. A. 1993 a. Hydrolysis of saturated soybean phosphatidylcholine in aqueous liposome dispersion. J. Pharm. Sci. 82:362-366.
Grit, M., Zuidam, N. J., Underberg, W. J. M. and Crommelin, D. J. A. 1993 b. Hydrolysis of partially saturated egg phosphatidylcholine in aqueous liposome dispersion and the effect of cholesterol incorporation on hydrolysis kinetics. J. Pharm. Pharmacol. 45:490-495.
Grit, M. and Crommelin, D. J. A. 1993 a. Chemical stability of liposomes : implications for their physical stability. Chem. Phy. Lipids 64:3-18.
Grit, M. and Crommelin, D. J. A. 1993 b. The effect surface change on the hydrolysis kinetics of partically hydrogenated egg phosphatidylcholine and egg phosphatidylglycerol in aqueous liposome dispersions. Biochim. Biophy. Acta. 1167:49-55.
Gregoriadis, G. and Davis, C. 1979. Stability of liposomes in vivo and in vitro is promoted by their cholesterol content and the presence of blood cells. Biochem. Biophy. Res. Com. 89:1287-1293.
Gregoriadis, G. 1984. Liposome technology. Vol. 1. CYC Press.
Gregoriadis, G., Davis, D. and Davies, A. 1987. Liposomes as immunological adjuvants : antigen incorporation studies. Vaccine. 5:145-150.
Gregoriadis, G. 1990 a. Immunological adjuvants : a role for liposomes. Immunology Today 11:89-97.
Gregoriadis, G. 1990 b. A procedure for the efficient entrapment of drugs in dehydration-rehydration liposomes (DRVs). Int. J. Pharm. 65:235-242.
Hazemoto, N., Harada, M., Suzuki, S., Haga, K. and Kato, Y. 1993. Effect of phosphatidylcholine and cholesterol on pH-sensitive liposomes. Chem. Pharm. Bull. 41:1003-1006.
Hayashi, K., Arakane, K., Naito, N., Nagano, T. and Hirobe, M. 1995. Allkyl chain length dependency in hydrolysis of liposomal phosphatidycholine by dialkyphosphate. Chem. Pharm. Bull. 43:1751-1754.
Halstenberg, S., Heimburg, T., Hianik, T., Kaatze, U. and Krivanek, R. 1998. Cholesterol-induced variations in the volume and enthalpy fluctuations of lipid bilayers. Biophy. J. 75:264-271.
Hernandez-Casselles, T., Villalain, J. and Gomez-Fernandez, J. C. 1990. Stability of liposome on long term storage. J. Pharm. Pharmacol. 42:397-400.
Heinonen, M., Rein, D., Teresa, S. G., Huang, S. W., German, J. B. and Frankel, E. N. 1998. Effect of protein on the antioxidant activity of phenolic compounds in a lecithin-liposome oxidation system. J. Agric. Food Chem. 46:917-922.
Hunt, C. A. and Tsang, S. 1981. α-tocopherol retards autoxidation and prolongs the shelf- life of liposomes. Int. J. Pharm. 8:101.
Inoue, K. 1974. Permeability properties of liposomes prepared from dipalmitoyllecithin, dimyristoyllecithin, egg lecithin, rat liver lecithin and beef brain sphingomyelin. Biochim. Biophy. Acta. 339:390-402.
Jizomoto, H., Kanaoka, E. and Hirano, K. 1989. Encapsulation of drugs by lyophilizes, empty dipalmitoylphosphatidylcholine liposomes. Chem. Pharm. Bull. 37:1895-1898.
Kirby, C., Clarke, J. and Gregoriadis, G. 1980. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 186:591-598.
Kirby, C. and Gregoriadis, G. 1984. Dehydration-rehydration vesicles : a simple method for high yield drug entrapment in liposomes. Bio. Tech. Nov:979-984.
Kim, H. H. Y. and Baianu, I. C. 1991. Novel liposome microencapsulation techniques for food applications. Trend Food Sci. Tech. March :55-61.
Kim, E. H. and Sevanian, A. 1991. Hematin- and peroxide-catalyzed peroxidation of phospholipid liposomes. Arch. Biochem. Biophy. 288:324-330.
Koide, K. and Karel, M. 1987. Encapsulation and stimulated release of enzymes using lecithin vesicles. Int. J. Food Sci. Tech. 22:707-723.
Krinsky, N. I. and Deneke, S. M. 1982. Interaction of oxygen and oxy-radicals with carotenoids. JNCI. 69:205-210.
Kunimoto, M., Inoue, K. and Nojima, S. 1981. Effect of ferrous ion and ascorbate-induces lipid peroxidation on liposomal membranes. Biochim. Biophy. Acta. 646:169-178.
Lasic, D. D. 1998. Novel applications of liposomes. Tibtech. 16:307-321.
Law, B. A. and King, J. S. 1985. Use of liposome for proteinase addition of cheddar cheese. J. Dairy Res. 52:183-188.
Lee, C., Barnett, J. and Reaven, P. D. 1998. Liposomes enriched in oleic acid are less susceptible to oxidation and have less proinflammatory activity when exposed to oxidizing conditions. J. Lipid Res. 39:1239-1247.
Levy, I., Roberts, J. and Baum, M. 1987. The use of liposomes in the diagnosis and treatment of malignant disease. Postgraduate Medical Journal 63:829-833.
Lundberg, B. 1977. Properties of mixed vesicles of lecithin:cholesterol up to 1:2 molar ratio. Chem. Phy. Lipids 18:212-220.
Maerker, G. and Jones, K. C. 1991. Unusual product ratios resulting from the gamma-irradiation of cholesterol in liposomes. Lipids 26:139-144.
Matsuzaki, M., McCafferty, F. and Karel, M. 1989. The effect of cholesterol content of phospholipid vesicle on the encapsulation and acid resistance of β-galactosidase from E. coli. Int. J. Food Sci. Tech. 24:451-460.
Mayer, L. D., Hope, M. J., Cullis, P. R. and Janoff, A. S. 1985. Solute distributions and trapping efficiencies observed in freeze-thawed multilamellar vesicles. Biochim. Biophys. Acta. 685:315-328.
Mayhew, E., Lazo, R., Vail, W. J., King, J. and Green, A. M. 1984. Characterization of liposomes prepared using a microemulsifier. Biochim. Biophys. Acta. 775:169-174.
Maza, A. D. L., Coderch, L., Lopez, O. and Parra, J. L. 1998. Transmission electron microscopy and light scattering studies on the interaction of a nonionic / anionic surfactant mixture with phosphatidylcholine liposomes. Microscopy research and technique. 40:63-71.
Montfoort, A., Bezstarosti, K., Groh, M. M. J. and Metsa-ketela, T. J. A. 1987. The influence of the lipid composition on the degree of lipid-peroxidation of liposomes. Biochem. Int. 15:525-543.
Moon, M. H., Park, I. and Kim, Y. 1998. Size characterization of liposomes by flow field-flow fractionation and photon correlation spectroscopy effect of ionic strength and pH of carrier solutions. J. Chrom. A 813:91-100.
Morita, M. and Tsushimi, N. 1981. Oxidized positions of fatty acyl moieties of phosphatidylethanolamine in liposome autoxidation. Agric. Biol. Chem. 45:1413-1418.
Morris, G. J. 1982. The response of liposomes to various rates of cooling to -196℃: effect of phospholipid : cholesterol ratio. Cryobiology 19:215-218.
Mowri, H. O., Nojima, S. and Inoue, K. 1984. Effect of lipid composition of liposome on their sensitivity to peroxidation. J. Biochem. 95:551-558.
Muramatsu, K., Maitani, Y., Machida, Y. and Nagai, T. 1994. Effect of soybean-derived sterol and its glucoside mixtures on the stability of dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylcholine / cholesterol liposomes. Int. J. Pharm. 107:1-8.
Nir, S., Bentz, J., Wilschut, J. and Duzgunes, N. 1983. Aggregation and fusion of liposomes. Prog. Surf. Sci. 13:1-124.
Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. and Papahadjopoulos, D. 1979. Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophy. Acta. 557:9-23.
Ostro, M. J. and Cullis, P. R. 1989. Use of liposomes as injectable-drug delivery systems. American of hospital pharmacy 46:1576-1580.
Papahadjopoulos, D., Nir, S. and Ohki, S. 1972. Permeability properties of phospholipid membrane : effect of cholesterol and temperature. Biochem Biophys. Acta. 266:561-583.
Perkins, W. R., Minchey, S. R., Ahl, P. L. and Janoff, A. S. 1993. The determination of liposome captured volume. Chem. Phy. Lipids 64:197-217.
Peschka, R. Dennehy, C. and Szoka, F. C. 1998. A sample in vitro model to study the release kinetics of liposome encapsulated material. J. Control. Rel. 56:41-51.
Philippot, J., Mutaftschiev, S. and Liautard, J. P. 1983. A very mild method allowing the encapsulation of very high amounts of macromolecules into very large unilamellar liposomes. Biochim. Biophy. Acta. 734:137-143.
Piard, J. C., Soda, M. E., Alkhalaf, W., Rousseau, M., Desmazeaud, M., Vassal, L. and Gripon, J. C. 1986. Acceleration of cheese ripening with liposome-entrapped proteinase. Biotech. Lett. 8:241-246.
Pick, U. 1981. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Arch. Biochem. Biophy. 212:186-194.
Piraube, C., Postaire, E., Lize, J. M., Prognon, P. and Peadeau, D. 1988. Evidence of chemical instability of phospholipids in liposomes. Chem. Pharm. Bull. 36:4600-4602.
Pohlmann, F. W. and Kuiper, P. J. C. 1981. Effect of α-tocopherol on the phase transition of phosphatidylcholine and on water transport through phosphatidycholine liposome membranes. Phytochemistry 20:1525-1528.
Riess, J. G. 1995. Introduction a new element-fluorine-intothe liposomal membrane. J. Liposome Res. 5:413-430.
Roddick, J. G. and Drysdale, R. B. 1984. Destabilization of liposome membranes by the steroidal glycoalkaloid α-tomatine. Phytochemistry 23:543-547.
Rowland, R. N. and Woodley, J. F. 1980. The stability of liposomes in vitro to p H, bile salts and pancreatic lipase. Biochim. Biophy. Acta. 620:400-409.
Schmedes, A. and Holmer, G. 1989. A new thiobarbituric acid (TBA) method for determining free malondialdehyde (MDA) and hydroperoxides selectively as a measure of lipid peroxidation. JAOCS. 66:813-816.
Senior, J. and Gregoriadis, G. 1982 a. Is half--life of circulating liposomes determined by changes in their permeability ? FEBS Lett. 145:109-114.
Senior, J. and Gregoriadis, G. 1982 b. Stability of small unilamellar liposomes in serum and clearance from the circulation : the effect of the phospholipid and cholesterol components. Life Sci. 30:2123-2136.
Shahidi, F. and Han, X. Q. 1993. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33:501-547.
Shimizu, M., Miwa, Y., Hashimoto, K. and Goto, A. 1993. Enccapsilation of chicken egg yolk immunoglobulin G (IgY) by liposomes. Biosci. Biotech. Biochem. 57:1445-1449.
Sreejayan, N. and Ritter, C. V. 1998. Effect of bile acids on lipid peroxidation : the role of iron. Free Rad. Bio. Med. 25:50-56.
Sullivan, S. M., Connor, J. and Huang, L. 1986. Immunoliposomes : preparation, properties, and applications. Med, Res. Rev. 6:171-195.
Surolia, A. and Bachhawat, B. K. 1978. The effect of lipid composition on liposome-lecithin interaction. Biochem. Biophy. Res. Com. 83:779-785.
Szoka, F. C. and Papahadjopoulos, D. 1998. Comparative properties and methods of preparation of lipid vesicle-liposomes. Auun. Rev. Biophys. Bioeng. 9 : 467-508.
Winden, E. C. A., Zhang, W. and Crommelin, D. J. A. 1997. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration. Pharm. Res. 14:1151-1160.
Winden, E. C. A., Talsma, H. and Crommelin, D. J. A. 1998. Thermal analysis of freeze-dried liposome-carbohydrate mixtures with modulated temperature differential scanning calorimetry. J. Pharm. Sci. 87:231-237.
Winden, E. C. A., Crommelin, D. J. A. 1999. Short term stability of freeze-dried, lyoprotected liposomes. J. Control. Rel. 58:69-86.
Witt, E. H., Reznick, A. Z., Viguie, C. V. and Packer, L. 1992. Exercise, oxidative damage and effects of oxidant manipulation. J. Nutr. 122: 766-773.
Xiang, T. X. and Anderson, B. D. 1998. Influence of chain ordering on the selectivity of dipalmitoylphosphatidylcholine bilayer membranes for permeant size and shape. Biophy. J. 75:2658-2671.
Yeagle, P. L. 1985. Cholesterol and the cell membrane. Biochem. Biophys. Acta. 822:267-287.
Yi, O. S., Meyer, A. S. and Frankel, E. N. 1997. Antioxidant activity of grape extracts in a lecithin liposome system. JAOCS. 74:1301-1307.
Yin, M. C. and Faustman C. 1993. Influence of temperature, pH, and phospholipid composition upon the stability of myoglobin and phospholipid : A liposome model. J. Agric. Food Chem. 41:853-857.
Yin, M. C., Faustman, C., Riesen, J. W. and Williams, S. N. 1993. α-tocopherol and ascorbate delay oxymyoglobin and phospholipid oxidation in vitro. J. Food Sci. 58:1273-1276.
Yin, M. C. and Cheng W. S. 1997. Oxymyoglobin and lipid oxidation in phosphatidylcholine liposomes retarded by α-tocopherol and β-carotene. J. Food Sci. 62:1095-1097.
Zaslavsky, B. Y., Borovskaya, A. A. and Rogozhin, S. V. 1984. Effect of lipid composition on hydrophobic properties of liposomes. Mole. Cell. Biochem. 60:131-136.
Zellmer, S. and Cevc, C. 1994. Thermolabile liposomes with a high fusion efficacy at 42℃ can be made of dipalmitoylphosphatidylcholine / fatty alcohol mixture in the molar ratio of 1/2. J. Liposome Res. 4:109-113.
Zuidam, N. J., Gouw, H. K. M. E., Barenholz, Y. and Crommelin, D. J. A. 1995. Physical in stability of liposomes upon chemical hydrolysis : the role of lysophospholipids and fatty acids. Biochim. Biophy. Acta. 1240:101-110.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top