跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 06:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林秋芳
研究生(外文):Chiu-Fang Lin
論文名稱:不同蛋殼強度褐色菜鴨之管狀殼腺上皮細胞於產蛋後4.5小時階段所表現之mRNAs的差異展現分析比較
論文名稱(外文):Differential Expression of mRNAs in Epithelia of Tubular Shell Glands of Brown Tsaiya Varying with Eggshell Strength
指導教授:鄭登貴鄭登貴引用關係
指導教授(外文):Winston Teng-Kuei Cheng
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:畜產學研究所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:101
中文關鍵詞:蛋殼強度褐色菜鴨管狀殼腺
外文關鍵詞:eggshell strengthBrown TsaiyaTubular Shell Glands
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
每年雞蛋從生產到運輸至消費者手中,約有13-20 % 的破損率,若增加其蛋殼強度將可減少其經濟損失。褐色菜鴨是本省產蛋率高且蛋殼品質優於雞蛋的家禽,其蛋殼強度呈現中度遺傳(0.53),在高蛋殼強度品系的蛋殼強度顯著比低蛋殼強度品系優異。近年來有關蛋殼品質的分子層次之研究,皆為蛋殼之有機基質,雖有機基質只占整個蛋殼的1~2%,卻是蛋殼品質的關鍵點。
本研究旨在針對褐色菜鴨在產蛋後之特定時段,比較蛋殼強度不同鴨隻之輸卵管殼腺部黏膜層細胞的基因表現情形,並嘗試選殖及定序彼等可能涉及蛋殼品質之基因,冀對於蛋殼品質之分子影響機制,能有更深入之瞭解。試驗初始乃依蛋殼強度之測定記錄,將褐色菜鴨分為強蛋殼(HES;ES>5.5 kg)與弱蛋殼(LES;ES>3.5 kg)兩大類,其二者經過分析後,的確是有強度上之差異(p< 0.0001)。鑑於褐色菜鴨排出之卵進入殼腺部的時刻,已知係在前一枚蛋產下後約5~7 h;推斷在此一時段前夕,當係蛋殼乳突層形成且係蛋殼有機基質開始迅速合成與堆積之際,進一步試驗及針對HES與LES鴨隻,分別於產蛋後4.5小時階段,先經過檢查確認其生殖道內存在有一枚形成中之蛋者,即將之犧牲並儘速刮取其管狀殼腺部之黏膜層細胞,經分別抽取其總RNA後,並利用72組引子組合,分別進行mRNA之差異展現分析(differential display polymerase chain reaction;DDRT-PCR)與two-step DDRT-PCR分析,俾比較HES與LES管狀殼腺部(tubular shell gland;TSG)之黏膜層細胞在這時段對於mRNA基因表現之差異性。試驗結果合計獲得16個具蛋殼強度特異性之基因片段;其中11條和5條差異性片段分別來自DDRT-PCR與two-step DDRT-PCR。並將所有差異性片段,經完成選殖與核酸定序並於NCBI網站所提供之基因庫進行序列比對後,証明其中13條係新發現的基因。並挑選其中1條基因片段TG36S,進一步應用同步定量聚合連鎖反應(real-time quantitative polymerase chain reaction;QPCR)分析;試驗結果顯示,在HES的TSG之黏膜層細胞對於TG36S基因之轉錄量,確實較LES高約1.83倍。此外,就HES分析,菜鴨於生蛋後4.5 h時,TG36S基因在殼腺(SG)、TSG、峽部(isthmus)及蛋白分泌部(magnum)等部位之轉錄量,分別為其在峽部者之7.57、4.05與2.60倍。鑒於該特定時段適為新排出之卵進入子宮之前夕,前述基因在該時段特別於殼腺有極高之表現量是否意味其與蛋殼之形成有密切關係,則尚待完成其全長cDNA之定序與定性後,始克針對其可能扮演之生理學功能,進行深入之探討。

Deterioration of eggshell quality associated with many factors causes economic loss due to breakage during the egg transportation and processing. While many approaches including aspects related to nutrition, feeding management, or housing environment etc. have so far been employed years for enhancing the shell strength of chicken eggs, there are approximate 12% of all commercial eggshells broken or cracked between oviposition and consumption. The organic matrix, though it occupies only 1 ~ 2% of the whole eggshell contents, can be one of the most important components involved in eggshell quality. Therefore, in this present study, attempts were made to identify and characterize gene(s) differentially expressed 4.5 h post oviposition in epithelia of tubular shell-glands of brown Tsaiya and it is hopefully that the results will provide a better understanding to the molecular mechanisms related to eggshell formation.
To achieve the said purpose, two herds of brown Tsaiya ducks showing significant difference in eggshell strength (ES), the high eggshell strength (HES) with an average ES value over 5.5 kg and the low eggshell strength (LES) with an average ES value less than 3.5 kg, were employed in the present study. Total RNA samples were extracted from epithelial cells of tubular shell gland 4.5 h post-ovipostion. Each RNA sample was subjected to analysis by the method of differential display reverse transcription polymerase chain reaction (DDRT-PCR) and two-step DDRT-PCR with a total of 72 primer sets designed. Comparisons were made to identify specific fragments of cDNA(s) between each sample amplified after the DDRT-PCR and two-step DDRT-PCR analysis. Among the 72 pairs of primer sets tested, only 8 primer-pairs were found to be effective in amplifying specific DNA fragments from the diversified products amplified. A total of 16 differential fragments of cDNA were obtained, including 11 fragments from the method of DDRT-PCR and 5 fragments from the two-step DDRT-PCR method. One of them, named TG36S, was further subjected to quantitative comparisons of its mRNA expressed between herds of HES- and LES-ducks, with the method of Real-Time Quantitive polymerase chain reaction (QPCR). Results appeared that the amount of TG36S mRNA expressed in the tubular shell glands from HES-ducks was 1.83 fold higher than that in the same tissue from LES-ducks. Moreover, to those HES-ducks, it was also noticed that much higher expression of TG36S, with some 7.57, 4.05, and 2.60 folds higher based on the amount of TG36S mRNA expressed, was found in epithelia of shell glands, tubular shell glands, and magnum, respectively, when comparisons were made to that of in epithelia of isthmus. Based on the fact that much higher expression of TG36S found in HES-ducks, particularly in epithelia of shell glands and tubular shell glands, it is worth to further investigate the physiological function of this gene product.

目 錄...……………………………………………………………I
表 次……………………………………………………………...IV
圖 次……………………………………………………………...V
附錄圖次………………………………………………………...VII
摘 要…………………………………………………………... 1
緒 言……………………………………………………………...3
第 一 章 文 獻 討…………………………………………….5
1.1 研究目的及源起……………………………………………5
1.1.1 褐色菜鴨之簡介……………………………………….5
1.1.2 高蛋殼度與低蛋殼強度品系之比較………………….6
1.2 雌禽之生殖與生殖道的解剖構造及生理功能……………6
1.3 蛋的形成與結構分佈………………………………………13
1.3.1 蛋殼的形成過程……………………………………….13
1.3.2 蛋殼乳突層的顯微結構……………………………….13
1.4 蛋殼的成分與晶體形成之研究………………………………16
1.4.1 蛋殼的有機基質成分…………………………………. 16
1.4.2 蛋殼碳酸鈣晶體形成之探討………………………… 19
1.5 蛋殼強度之測定及影響因子……………………………….21
1.5.1蛋殼品質之測定方法………….……………………….21
1.5.2 影響蛋殼品質的因子………………………………….22
1.6 反轉錄聚合連鎖反應差異展現法(DDRT-PCR)………. 23
1.6.1 基本原理……………………………………………….23
1.6.2 影響因子……………………………………………….25
1.7 同步定量聚合連鎖反應(Real-Time quantitative polymerase chain reaction)……………………………………………25
1.7.1 基本原理……………………………...……………..26
1.7.2 △Rn、CT與threshold的定義………………………….27
1.7.3 引子及探針之設計條件………………………………..30
1.7.4 同步定量聚合連鎖反應溶液組成的特色…………..30
1.7.5 同步定量聚合連鎖反應的增幅條件…………...31
第 二 章 材 料 與 方 法…………………………………...32
2.1 樣品的收集……………………………………………….32
2.1.1 試驗鴨隻與蛋殼強度之測定…………………………..32
2.1.2 生殖道組織的收集…………………………………...32
2.2 褐色菜鴨管狀殼腺的黏膜上皮細胞中mRNA的差異展現分析34
2.2.1 total RNA的抽取……………………………………..34
2.2.2 確認total RNA濃度與品質………………………….35
2.2.2.1 迷你膠體電泳法…………………………………...35
2.2.2.2 RNA濃度的測定……………………………………35
2.2.3 利用DD-RT-PCR檢測特異性DNA片段……………….36
2.2.3.1 mRNA之反轉錄作用………………………………..36
2.2.3.2 聚合連鎖反應…………………………………….38
2.2.3.3 定序膠體電泳………………………………………38
2.2.3.4 回收特異性DNA表現之片段……………………..40
2.2.4 特異性片段的構築…………………………………...41
2.2.5 用PCR的方式來確認insert size………………………41
2.3 褐色菜鴨的部分β-actin基因序列的構築……………...43
2.3.1 引子的設計…………………………………………...43
2.3.2 PCR產物的築構…………………………………………43
2.3.3 基因序列的比對……………………………………...46
2.4 定量聚合連鎖反應(QPCR)……………………………46
2.4.1 資料分析……………………………………………...48
第 三 章 結 果 與 討 論…………………………………...50
3.1 試驗動物蛋殼強度之結果分析…………………………….50
3.2 錨定與隨機引子之配對組合對褐色菜鴨管狀殼腺黏膜上皮細胞基因轉錄物(mRNA)進行DDRT-PCR測試之效果.………………..52
3.2.1 於HES褐色菜鴨所選殖到的基因片段………………..54
3.2.2 於LES褐色菜鴨所選殖到的基因片段………………..71
3.3 褐色菜鴨管狀殼腺黏膜上皮細胞中表現具有蛋殼強度差異性基因之屬性……………………………………………………………...72
3.4 β-actin核酸序列的比對………………………………..75
3.5 QPCR的試驗結果…………………………………………..75
3.5.1 TG36S與β-actin的增幅效率………………………..77
3.5.2 目標基因(TG36S)在不同蛋殼強度的褐色菜鴨的比較77
第 四 章 結 論……………………………………………….87
第 五 章 參 考 文 獻………………………………………….88
英 文 摘 要……………………………………………………….96
附  錄………………………………………………………...98
作 者 小 傳……………………………………………………….101

李舜榮。1997。菜鴨蛋殼強度雙向選拔對血液性狀之影響。博士論文。國
立臺灣大學畜產學研究所。
李舜榮、潘生才、徐庶財、陳保基。1991。產蛋菜鴨籠飼之探討。畜產研
究24(2) : 177-185.
何若澐。2000。蛋雞殼腺上皮細胞基因轉錄之測定與特異性cDNA片段之選
殖。碩士論文。國立中興大學畜產學系。
武永芬。2000。小鼠新鋅指蛋白基因之選殖及其在子宮組織之表現。碩士
論文。國立臺灣大學畜產學研究所。
馬春祥譯。1983。第五章,家禽生殖之重大問題。pp.49-57。禽畜生殖。
國立編譯館。
馬春祥。1984。家禽學。pp.117-144。國立編譯館。
馬春祥、吳和光、鄭登貴合譯;Etches R. J.著。1997a。第二章,蛋。
pp. 9-38。家禽之生殖。國立譯編館。
馬春祥、吳和光、鄭登貴合譯;Etches R. J.著。 1997b。第七章,蛋之
形成。pp. 165-205。家禽之生殖。國立編譯館。
張虹書。1997。豬在發情及人工授精後不同時段被輸卵管上皮細胞所表現
之基因。碩士論文。國立臺灣大學畜產學研究所。 
傅筱婷。1999。以磷脂醯絲胺酸合成基因鑑定腸炎弧菌及其作為弧菌分
類的研究。碩士論文。國立臺灣大學農業化學研究所。
陳婉琳。2000。產蛋菜鴨和來航雞之蛋殼鎂沉積模式與殼腺生理特性的比
較。博士論文。國立臺灣大學畜產學研究所。
魏恆巍、沈添富,1991。飼糧中不同鈣含量對產蛋菜鴨和產蛋來航雞殼腺
內黏膜碳酸酐之影響。中華農學會報:新156:103-114。
Abatangelo, G., D. Daga-Gordini, I. Castellani, and R. Cortiva.
1978. Some observations on the calcium ion binding to the
eggshell matrix. Calcif. Tissue Res. 26: 247-252.
Addadai, L., J. Moradian, E. Shay, N. G. Maroudas, and S.
Weiner. 1987. A chemical model for the cooperation of
sulfate and carboxylates in calcite crystal nucleation:
Relavance to biomineralization. Proc. Natl. Acad. Sci. USA
84: 2732-2736.
Addadai, L., and S. Weiner. 1992. Control and design principles
in biological mineralization. Angew. Chem. Int. Ed. Engl.
31: 153-169.
Arias, J. L., M. Cataldo, M. S. Fernandez, and E. Kessi. 1997.
Effect of beta-aminoproprionitrile on eggshell formation.
Br. Poult. Sci. 38: 349-354.
Arias, J. L., M. S. Fernandez, J. E. Dennis, and A. I. Caplan.
1991. Collagens of the chicken eggshell membranes. Connect.
Tissue Res. 26: 37-45.
Arias, J. L., M. S. Fernandez, J. E. Dennis, and A. I. Caplan.
1991. The fabrication and collagenous substructure of the
eggshell membrane in the isthmus of the hen oviduct. Matrix
Biol. 11: 313-320.
Ayala, M., R. F. Balint, M. E. Fernandez-de-Cossio, L. Canaan-
Haden, J. W. Larrick, and J. V. Gavilondo. 1995. New primer
strategy improves precision of differential display.
Biotechniques 18: 842-850.
Baker, J. R., and D. A. Balch. 1962. A study of the organic
material of hen’s-egg shell. Biochem. J. 82: 352-361.
Bar, A., and S. Hurwitz. 1973. Uterine calcium-binding protein
in the laying fowl. Comp. Biochem. Physiol. 45A: 579-586.
Barak, S. T., M. Schickler, V. Knoppov, R. Shapira, S. Hurwitz,
and M. Pines. 1995. Synthesis and phosphorylation of
osteopontin by avian epiphyseal growth-plate chondrocytes
as affected by differentiation. Comp. Biochem. Physiol.
111C: 49-59.
Baumgartner, S., D. J. Brown, E. Salevsky, JR., and R. M.
Leach, JR. 1978. Copper deficiency in the laying hen. J.
Nutr. 108: 804-811.
Berner, R. A. 1975. The role of magnesium in the crystal growth
of calcite and aragonite from sea water. Geochim.
Cosmochim. Acta. 39 : 489-504.
Bulter, W. T. 1989. The nature and significance of osteopontin.
Connect. Tissue Res. 23: 123-136.
Burley, R. W., and D. V. Vadehra. 1989. The egg shell and shell
membranes: properties and synthesis. In “The Avian Egg
Chemistry and Biology”, pp.25-64. A Wiley-Interscience p
publication, NY. USA.
Callard, D., B. Lescure, and L. Mazzolini. 1994. A method for
elimination of false positives generated by the mRNA
differential display technique. Biotechniques 16: 1096-
1097.
Corradino, R. A., R. H. Wasserman, M. M. Publos, and S. I.
Chang. 1968. Vitamin D3 induction of a calcium-binding
protein in the uterus of the laying hen. Arch. Biochem.
Biophys. 125: 378-380.
Cross, N. C. 1995. Quantitative PCR techniques and
applications. J. Haematol. 89: 693-697.
Doss, R. P. 1996. Differential display without radioactivity a
modified procedure. Biotechniques 21: 408-412.
Edward, D. H., E. B. Johnie, M. L. Roland, JR. 1980.
Localization of lysyl oxidase in hen oviduct: Implications
in egg shell membrane formation and composition. Science
208: 55-56.
Engstrom, G., C. Weybe, and L. E. Liljedahl. 1986. Genetic
correlations and heritabilities for frequency of cracked
eggs, egg number and egg weight in laying hens. Br. Poult.
Sci. 27: 55-61.
Fernandez, M. S., M. Araya, J.L. Arias. 1997. Eggshells are
shaped by a precise spatio-temporal arrangement of
sequentially deposited macromolecules. Matrix Biol. 16: 13-
20.
Ferre, F. 1992. Quantitative or semi-quantitative PCR: Reality
versus myth. PCR Methods Appl. 2: 1-9.
Fink, D. J., A. I. Caplan, and A. H. Heuer. 1992. Eggshell
mineralization: A case study of a bioprocessing strategy.
MRS Bull. 17: 27-31.
Foley, K. P., M. W. Leonard, and J. D. Engel. 1993.
Quantitation of RNA using the polymerase chain reaction.
Trends Genet. 9: 380-385.
Freeman, W. M., S. J. Walker, and K. E. Vrana. 1999.
Quantitative RT-PCR: Pitfalls and potential. Biotechniques
26: 112-125.
Fullmer, C. S., M. E. Brindak, A. Bar, and R. H. Wasserman.
1976. The purification of calcium-binding protein from
uterus of laying hen. Proc. Soc. Exp. Biol. Med. 152: 237-
241.
Gause, W. C., and J. Adamovicz. 1994. The use of PCR to
quantitate gene expression. PCR Methods Appl. 3: S123-135.
Gautron J., M. Bain, S. Solomon, and Y. Nys. 1993. Soluble
matrix proteins of the hen’s egg shell delay the
precipitation of calcium carbonate in vitro and affect
morphology of the crystal. Proceedings of the 5th European
Symposium on the quality of eggs and egg products. Tours.
French. pp.191-197.
Gautron, J., M. Bain, S. Solomon, and Y. Nys. 1996. Soluble
matrix of hen,s eggshell extract changes in vitro the rate
of calcium carbonate precipitation and crystal morphology.
Br. Poult. Sci. 37: 853-856.
Gautron, J., M. T. Hincke, and Y. Nys. 1997. Precursor matrix
proteins in the uterine fluid change with stages of
eggshell formation in hens. Connect. Tissue Res. 36(3): 195-
210.
Graf, D., A. G. Fisher, and M. Merkenschlager. 1997. Rational
primer design greatly improves differential display-PCR (DD-
PCR). Nucleic Acids Res. 25: 2239-2240.
Halford, W. P. 1999. The essential prerequistites for
quantitative PCR. Nat. Biotechnol. 17: 835.
Hamilton, R. M. G. 1982. Methods and factors that affect the
measurement of egg shell quality. Poult. Sci. 61: 2022-2039.
Hamilton, R. M. G., and B. K. Thompson. 1980. Effect of sodium
plus potassium to chloride ratio in practical type diets on
blood gas levels in three strains of White Leghorn hens and
the relationship between acid-base balance and egg shell
strength. Poult. Sci. 59: 1294-1303.
Harms, R. H., A. F. Rossi, D. R. Solan, R. D. Miles, and R. B.
Christmas. 1990. A method for estimating shell weight and
correcting specific gravity for egg weight in egg shell
quality studies. Poult. Sci. 69: 48-52.
Hincke, M. T., A. M. Bernard, E. R. Lee, C. P. W. Tsang, and R.
Narbaitz. 1992. Soluble matrix protein of the chicken
eggshell: Characterization and immunochemistry. Proceedings
of the 5th European Symposium on the quality of eggs and
egg products. Tours, French. pp. 127-133.
Hincke, M. T. 1995. Ovoalbumin is a component of the chicken
eggshell matrix. Connect. Tissue Res. 31(3): 227-233.
Hincke, M. T., C. P. W. Tsang, M. Couryney, V. Hill, and R.
Narbaitz. 1995. Purification and immunochemistry of a
soluble matrix protein of the chicken eggshell (ovocleidin
17). Calcif. Tissue Int. 56: 578-583.
Hincke, M. T., J. Gautron, M. Panheleux, J. Garcia-Ruiz, M. D.
McKee, and Y. Nys. 2000. Identification and location of
lysozyme as a component of eggshell membranes and eggshell
matrix. Matrix Biol. 19: 443-453.
Hinguchi, R., and S. Kwok. 1989. Avoiding false positive with
PCR. Nature 339: 237-238.
Izat, A. L., F. A. Gardner, and D. B. Mellor. 1985. Effects of
age of bird and season of the year on egg quality 1. Shell
quality. Poult. Sci. 64: 1900-1906.
Jackson, S. W., J. S. Stephen, M.-C. P. Ghislaine, C. W.
Pamela, C. James, P. Jayashree, Y.-L. Hom, E. G. Jose, H. Arne, A. P. Per, R. J. Michael, and G. E. Mark. 1996. Cloning
differentially expressed mRNAs. Nautre Biotechnology 14:
1685-1691.
Johnson, A. L. 1986. Reproduction in the female. In Avian
Physiology, 4th edn, ed. P.D. Sturkie. Springer-Verlag,
Berlin. p.403.
Johansson, K., J. örbeg, A.B. Carlgern, and M. Wilhelmson.
1996. Selection for egg shell strength in laying hens using
shell membrane characteristics. Br. Poult. Sci. 37: 757-763.
Kinney, T. B. 1969. A Summary of Reported Estimates of
Heritability and of Genetics and Phenotypic Correlation for
Traits of Chickens. Washington D. C., Agricultural Research
Service, United States Department of Agriculture.
Knopov, V., R. M. Leach, S. T. Barak, S. Hurwitz, and M. Pines.
1995. Osteopontin gene exprssion and alkaline phosphatease
activity in avian tibial dyschoonfroplasia. Bone 16: 329S-
334S.
Kramptiz, G., and G. Graser. 1988. Molecular mechanisms of
biomineralization in the formation of calcified shells. Angew. Chem. Int. Ed. Engl. 27: 1145-1156.
Kwok, S. 1990. Procedures to minimize PCR-product carry-over.
pp.142-145. In Innis, M. A., D. H. Gelfand, J. J. Sninsky,
and T, J. White.(ed). PCR protocols. A Guide to methods and
application. Academic Press, Inc., San Diego, CA.
Lavelin, I., N. Yarden, S. Ben-Bassat, A. Bar, and M. Pines.
1998. Regulation of osteopontin gene exprssion during egg
shell formation in the laying hen by mechanical strain.
Matrix Biol. 17: 615-623.
Lee, L.G., C. R. Connell, and W. Block. 1993. Allelic
discrimination by nick-translation PCR with fluorogenic
probes. Nucleic Acids Res. 21: 3761-3766
Liang, P., and A. B. Pardee. 1992. Differential display of
eukaryotic messenger RNA by means of the polymerase chain
reaction. Science 257: 967-970.
Livak, K., J. Marmaro, and S. Flood. 1995. Guidelines for
designing TaqMan fluorogenic probes for 5’ nuclease
assays. Research News by PE Applied Biosystems.
Lott, B. D., and F. N. Reece. 1981. The effect of ambient air
moisture and temperature on egg shell breaking strength.
Poult. Sci. 47: 404-410.
Nys, Y., J. Gautron, M. D. Mc Kee, J. M. Garcia-Ruiz, and M. T.
Hincke. 2000. Biochemical and functional characterization
of eggshell matrix proteins in hens. Final programme XXI
World’s poultry congress. Canada. S3.6.03.
Ogasawara, T., O. Koga, and H. Nishiyama. 1975. Premature
oviposition induced by intrauterine injection of phosphate
solution in the laying hens. Jap. J. Zootech. Sci. 46: 185-
191.
Parsons, A. H. 1982. Structure of the eggshell. Poult. Sci. 61:
2013-2021.
Parsons, A. H., and G. F. Combs, JR., 1982. Role of
ultrastructure in determining eggshell strength. Poult.
Sci. 61: 569-572.
Pharmaceuticals, S. B. 1995. Invited commentary: Differential
display or differential dismay ? Curr. Opin. Biotechnol. 6:
597-599.
Perkin-Elmer. 1996. AmpliTaq Gold product insert. Review 3.
Perkin-Elmer. 1997. User Bulletin #2 ABI PRISM 7700 sequence
detection system. Perkin-Elmer Applied Biosystems CA.,
U.S.A.
Perkin-Elmer. 1998a. ABI PRISM 7700 sequence detector system
user’s manual. Perkin-Elmer Applied Biosystems CA., U.S.A.
Perkin-Elmer. 1998b. TaqManâ Universal PCR Master Mix
protocol. Perkin-Elmer Applied Biosystems CA., U.S.A.
Pines, M., V. Knopov, and A. Bar. 1994. Involvement of
osteopontin in egg shell formation in the laying chicken.
Matrix Biol. 14: 765-771.
Poggenpoel, D. G. 1986. Correlated response in shell and
albumen quality with selection for increased egg
production. Poult. Sci. 65: 1633-1641.
Potts, P. L., and K. W. Washburn. 1974. Shell evaluation of
white and brown egg strains by deformation, breaking
strength, shell thickness and specific gravity. Poult. Sci.
53: 1123-1128.
Potts, P. L., and K. W. Washburn, Sr. 1985. Genetic variation
in strength and its relationship to egg size. Poult. Sci.
64: 1249-1256.
Prichner, F., and C. M. V. Krosigk. 1973. Genetic parameters of
cross and purebred poultry. Br. Poult. Sci. 14: 193-201.
Raeymaekers, L. 1993. Quantitative PCR: Theoretical
considerations with practical implications. Anal. Biochem.
214: 582-585.
Raeymaekers, L. 1995. A commentary on the practical
applications of competitive PCR. Genome Res. 5: 91-94.
Reece, P. L., and B. D. Lott. 1976. The effect of loading rate
on the breaking force, deformation, and stiffness modulus
of eggs. Poult. Sci. 55: 349-358.
Resichl, U., and B. Kochanowski. 1995. Quantitative PCR. A
survey of the present technology. Mol. Biotechnol. 3: 55-71.
Richards J. F., and L. M. Stalay. 1967. The relationships
between crushing strength, deformation and other physical
measurements of the hen’s egg. Poult. Sci. 46: 430-437.
Roberts, J. R., and C. E. Brackpool. 1994. The ultrastructure
of avian egg shells. Poultry Science Review, 5: 245-272.
Roland, A. A. Sr. 1988. Research note: egg shell problems:
estimates of incidence and economic impact. Poult. Sci. 67:
1801-1803.
Salevsky, E., and R. M. Leach. 1980. Studies on the organic
components of shell gland fluid and the hen’s egg shell.
Poult. Sci. 59: 438-443.
Simkiss, K. 1964. Phosphates as crystal poisons of
calcification. Biol. Poult. Sci. 8: 55-63.
Sokolov, B. P., and D. J. Prockop. 1994. A rapid and simple PCR-
based method for isolation of cDNA from differerntially
expressed genes. Nucleic Acids Res. 22: 4009-4015.
Solomon, S. E. 1983. The oviduct. In Physiology and
Biochemistry of the Domestic Fowl, Vol. 4., ed. B. M. Freeman. Academic Press, London. p.379.
Solomon, S. E. 1991. Egg and Eggshell Quality. Wolfe Publishing
Limited, London.
Van de V., J. P., F. C. Ginkel, and J. P. W. Vermeiden, 1986.
Patterns and relationship of plasma calcium, protein and
phosphorus during the egg laying cycle of the fowl and the
effect of dietary calcium. Br. Poult. Sci. 27: 421-433.
Voisey, P. W. 1975. Field comparison of two instruments for
measuring shell deformation to estimate egg shell strength.
Poult. Sci. 54: 190-194.
Voisey, P. W., and R. M. G. Hamilton. 1976. Factors affecting
the non-destructive methods of measuring egg shell strength
by the quasi-static compression test. Br. Poult. Sci. 17:
103-124.
Voisey, P. W., R. M. G. Hamilton, and B. K. Thompson. 1979.
Laboratory measurements of eggshell strength. 2. The quasi-
static compression, puncture, non-destructive deformation,
and specific gravity methods applied to the same egg.
Poult. Sci. 58: 288-294.
Wasserman, R. H., J. S. Chandler, S. A. Meyer, C. A. Smith, M.
E. Brindak, C. S. Fullmer, J. T. Penniston, and R. Kumar.
1992. Intestinal calcium transport and calcium extrusion
process at the basolateral membrane. J. Nutr. 122: 662-671.
Weiner, S., and L. Addadi. 1991. Acid macromolecules of
mineralized tissue: the controllers of crystal formation.
Trends Biochem. Sci. 16: 252-256.
Zhang, J. S., E. L. Duncan, A. C.-M. Chang and R. R. Reddel.
1998. Differential display of mRNA. Mol. Biotechnol. 10:
155-165.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top