跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/09 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曹慧嫻
研究生(外文):Tsau, Huei-Shian
論文名稱:常見室內植物對甲醛之吸收及其反應
論文名稱(外文):Uptake of Formaldehyde by Indoor Plants and Their Response to This Pollutant.
指導教授:孫岩章孫岩章引用關係
指導教授(外文):En-Jang Sun
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:植物病理學研究所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:89
中文關鍵詞:甲醛室內植物吸收速率沈降速度氣孔污染物吸收
外文關鍵詞:formaldehydeindoor plantsflux densitydeposition velocitystomatapollutantuptakeabsorption
相關次數:
  • 被引用被引用:10
  • 點閱點閱:1667
  • 評分評分:
  • 下載下載:269
  • 收藏至我的研究室書目清單書目收藏:4
利用體積2公升之小型熏氣箱系統,測試十一種常見之室內植物對甲醛濃度17.61±0.84ppm吸收之能力。所得結果各植物之沈降速度範圍為0.19~0.01mm/s,大小依次為山蘇花、粗肋草、黃金葛、蔓綠絨、馬拉巴栗、迷你火鶴、紅邊椒草、白紋草、黛粉葉、佛州星點木及白邊萬年青。土壤及水亦能吸收甲醛,但與測試的十一種植物比較,吸收力屬較弱之受體。測試山蘇花、粗肋草及黃金葛於日間及夜間對甲醛濃度17.00±0.63ppm吸收能力之變化,三種植物於夜間吸收力均僅為同者之1/33~1/4。測試山蘇花及粗肋草於10000、5000、1000、0 Lux四種光度下,對甲醛濃度17.41±0.81ppm吸收能力之結果,發現光度越弱,葉片對甲醛之吸收力亦越弱。於四種光度下發現山蘇花葉片對甲醛之吸收力與水分通導度及吸收力與光度之間均有顯著正相關,故證明甲醛主要經氣孔進入葉片而被吸收。
以開放式生態箱熏氣系統測試六種植物對甲醛濃度1.19±0.20ppm之吸收力,所得結果各植物沈降速度範圍為3.14~1.30mm/s,大小依序為馬拉巴栗、波斯頓蕨、蔓綠絨、黃金葛、黛粉葉及紅邊椒草,此與小型熏氣箱測試者並不一致。測試波斯頓蕨、蔓綠絨及紅邊椒草照光下,連續24小時對甲醛濃度1.21±0.17ppm之吸收,發現隨熏氣時間的增加,三種植物的吸收力均有下降的趨勢,顯示植物不耐長期之熏氣,其中紅邊椒草的吸收力於夜間最小,至日間則會回升。惟在小型熏氣箱中之測試發現,若對植物葉片熏氣一小時後,翌日該葉片即可恢復其吸收力。
於上述熏氣試驗中,於馬拉巴栗嫩葉上可觀察到可能是由甲醛造成之淡褐色塊斑病徵,但於其他十一種植物葉片上,均未觀察到有因接受甲醛熏氣而受害之病徵出現。
本研究所使用之兩種熏氣系統各有其優缺點,小型熏氣系統較適合用於探討影響葉片吸收甲醛之因子及其吸收機制;生態箱熏氣系統則較適合用於篩選淨化甲醛能力較佳之植物品種。
在實際應用方面,本研究證實綠色植物對甲醛具有良好的吸收力,其實測耗損率雖只為3~11%,但卻具有同時吸收二氧化碳等多種氣態污染物之功能,且成本低,可永續利用,兼具綠美化、室內生態化、調節微氣候之功能,故甚具應用推廣之價值。
A small fumigation cuvette with size of 2 liter was designed for measuring the uptake rate of formaldehyde by eleven common indoor plant species. The deposition velocities had measured and ranged from 0.19 to 0.01 mm/s. The nest fern(Asplenium nidus L.) has the greatest deposition velocity, followed by chinese evergreen(Aglaonema ‘Silver King’), golden pothos(Epipremnum aureum Bunt.), philodendron(Philodendron ‘Imperal Green’), malabar chestnut(Pachira macrocarpa Schl.), flamingo flower(Anthurium roseum), radiator plant(Peperomia clusiaefolia), St. Bernard’s lily(Chlorophytum bichetii Backer), dumb cane(Dieffenbachia ‘Pali Hai’), gold-dust dracaena(Dracaena godseffiana cv. Florida Beauty) and Dracaena sanderiana. The tested soil and water plate also have uptake ability, but their uptakes are medium among the green plants. nest fern, chinese evergreen, and golden pothos were tested in day (light) and Night (dark) conditions against 17.00±0.63ppm formaldehyde. The results showed that generally the uptake rates in dark were about 1/33 to 1/4 of those in light. Light intensity of 10000, 5000, 1000 and 0 Lux were compared for formaldehyde uptake by nest fern and chinese evergreen. Generally the uptake rates were higher as the light intensity increased. The results of leaf conductance measurement with nest fern as compared with formaldehyde uptake rates indicated that the gas was absorbed primarily through the stomata.
The measurement of formaldehyde uptake by six plant canopies using an air-cleaning ecosystem tank (Sentai Technology Co.) with size of 105 x 45 x 60 cm, showed that the deposition velocities were in the range of 3.14~1.83 mm/s. The greatest is malabar chestnut, followed by Boston fern(Nephrolepis exaltata cv. ‘Bostoniensis’), dumb cane, philodendron, golden pothos, and radiator plant. The deposition velocities of the same species were generally higher than those measured with the 2-liter cuvette system. When the canopy of Boston fern, philodendron, and radiator plant were continuously exposed to 1.21±0.17ppm of formaldehyde for 24hr, the uptake rates generally decreased. However, the uptake rate of radiator plant fluctuated with the diurnal pattern. The measurements using 2-liter cuvette also indicated that the plants usually recover their uptake ability when they have a 24-hour break between each two exposures.
In this study, all the plants except malabar chestnut were not sensitive to 17.61±0.86ppm of formaldehyde. The young leaves of malabar chestnut showed brown necrotic spot symptoms as exposed to 20.70 ppm of formaldehyde for 1 hour.
The studies indicated that small cuvette system was only suitable for mechanism and factorial analysis studies. While the large natural ecosystem tank was more suitable for canopy uptake studies and screening tests.
All the results in this research indicate that indoor green canopy is a promising approach for controlling indoor air pollutants such as formaldehyde and carbon dioxide. Although the depletion rates were only at the range of 3 to 11 %, the green plant has many other advantages such as low cost, easy to maintain, absorbing many gaseous pollutants like CO2 simultaneously, sustainable working, improving aesthetic environment, and improving microclimate for human being.
壹、前言1
貳、文獻回顧4
參、材料與方法13
一、供試植物13
(一)、供試植物之介紹13
(二)、供試植物之栽培與管理17
二、十一種植物葉片對甲醛之吸收測試18
(一)、小型熏氣箱之設計18
1.熏氣箱設計18
2.產氣系統19
3.監測系統19
(二)、測試理論與方法22
(三)、植物葉片對甲醛吸收測試後再測試之吸收情況23
(四)、十一種植物葉片對甲醛之吸收測試及病徵反應23
(五)、植物葉片對甲醛吸收之晝夜比較24
(六)、不同光度下植物對甲醛吸收力之比較25
(七)、山蘇花葉片在不同光度下,對甲醛之吸收力與水份通導度之關係測試26
(八)、十二種植物葉片水分通導度與甲醛吸收力之關係測試27
(九)、植物葉片上下表面氣孔分布及密度27
(十)、蒸餾水及土壤對甲醛之吸收27
三、六種植被對室內甲醛之吸收測試29
(一)、室內熏氣設備29
1.熏氣箱29
2.產氣系統29
3.監測系統29
(二)、測試理論與方法32
(三)、栽培介質及空盆對甲醛之吸收力測試33
(四)、生態箱六種植被對室內甲醛之吸收測試33
(五)、生態箱三種植被對室內甲醛24小時及48小時之吸收測試34
肆、結果35
一、小型熏氣箱設計成效35
二、十一種植物葉片對甲醛之吸收測試及病徵反應結果38
三、植物葉片對甲醛吸收力測試後再測試之吸收情況44
四、植物葉片對甲醛吸收之晝夜比較45
五、不同光度下植物對甲醛吸收力之比較47
六、山蘇花葉片在不同光度下,對甲醛之吸收力與水分通導度之關係50
七、不同植物品種對甲醛吸收力與其水分通導度之相關性分析53
八、植物葉片上下表面氣孔分布及密度54
九、蒸餾水與土壤對甲醛吸收力之測試56
十、生態箱六種植被對室內甲醛之吸收測試57
十一、生態箱三種植被對甲醛連續24小時及48小時之吸收測試62
伍、討論64
陸、中文摘要71
柒、英文摘要73
捌、參考文獻75
王亞男, 姜加華, 孫岩章, 李鎮宇, 余金益. (1997). 木本樹種淨化臭氧與二氧化氮能力之評估(一)。 台大實驗林研究報告 11(2):55-72.
宋炯輝, 王亞男, 孫岩章, 賀立行. (1998). 木本樹種淨化臭氧與二氧化氮能力之評估(三)。 台大實驗林研究報告 12(4): 269-288.
李鎮宇, 余金益, 王亞男, 姜加華, 孫岩章, 宋炯輝. (1997). 木本樹種淨化臭氧與二氧化氮能力之評估(二)。 台大實驗林研究報告 11(4):31-47.
呂宜玲. (1997). 植物對過氧硝酸乙醯酯的吸收及其反應. 國立台灣大學植物病蟲害研究所論文.
吳淑芬. (1995). 實用生活叢書 園藝系列2 觀葉植物, 初版五刷. 渡假出版社有限公司. 台北.
黃武林, 黃泮官, 何陽修編著. (1995) 天南星科觀賞植物.
陳彥志. (1995). 觀賞苗木對臭氧的吸收及其耐抗性研究. 國立台灣大學植物病蟲害研究所論文.
陳彥志, 孫岩章. (1999). 常見行道數植物對臭氧吸收能力之比較研究。 中華民國環境保護學會會誌 22: 99-109.
陳勤仁. (1997). 合板游離甲醛之研究. 台北醫學院藥學研究所論文.
孫岩章. (1984). 空氣污染公害之鑑定技術及圖鑑. 行政院衛生署環境保護局編委會.
孫岩章. (1993). 綠色植物淨化空氣的機能. 科學農業. 41 (7,8):163-176.
孫岩章. (1999). 利用空氣清淨生態系統裝置改善室內空氣品質的一種設計。 中華民國環境保護學會會誌 22:131-141。
高清, 孫岩章, 陳鋒男. (1997). 木本植物吸收二氧化硫能力的評估。 台大實驗林研究報告 11(2): 125-138.
謝翁維. (1998). 十種植物對二氧化硫、二氧化氮及臭氧的吸收測試. 國立台灣大學植物病蟲害研究所論文.
薛聰賢. (2000). 台灣花卉實用圖鑑第2, 4, 5輯. 薛聰賢出版. 彰化員林.
Alderson, T. (1967). Induction of genetically recombinant chromosomes in the absence of induced mutation. Nature. 215: 1281-1283.
Anderson, I., Lundqvist, G. R., and Molhave, L. (1975). Indoor air pollution due to chipboard used as a construction material. Atmosph. Environ. 9: 1121-1127.
Beckerson, D. W. and Hofstra, G. (1979). Response of leaf diffusive resistance of radish, cucumber and soybean to O3 and SO2 singly or in combination. Atmosph. Environ. 13: 1263-1268.
Bennett, J. H. and Hill, A. C. (1973a). Absorption of gaseous air pollutants by a standardized plant canopy. J. Air Pollut. Contr. Assoc. 23: 203-206.
Bennett, J. H. and Hill, A. C. (1973b). A model for gaseous pollutant sorption by leaves. J. Air Pollut. Contr. Assoc. 23: 957-962.
Black, V. J. and Unsworth, M. H. (1979). Resistance analysis of sulfur dioxide fluxes to Vicia faba. Nature. 282:68-69.
Brown, K. W. (1969). A model of the photosynthesizing leaf. Physiol. Plant. 22: 620-637.
Brown, R. (1988). Proff positive: Plants clean the air. Interior landscape industry. pp 8-11.
Chanet, R., Izard, C., and Moustacchi, E. (1975). Genetic effects of formaldehyde in yeast. I. Influence of the growth stages on killing and recombination. Mutation Research. 33: 179-186.
Chuah, Y. K., Fu, Y. M., Hung, C. C., and Tseng, P. C. (1997). Concentration variations of pollutants in a work week period of an office. Building and Environ. 32(6): 535-540.
Colbeck, I. and Mackenzie, A. R. (1994). Air pollution by photochemical oxidants. Air Quality monographs. Vol. 1. Elsevier. Amsterdam-London-New York-Tokyo.
Cooper, P. (1979). Genetic effects of formaldehyde. Food Cosmet. Toxicol. 17(3): 300-301.
Cope, D. M. and Spedding, D. J. (1982). Hydrogen sulfide uptake by vegetation. Atmosph. Environ. 16:349-353.
Dally, K. A., Hanrahan, L. P., Woodbury, M. A., and Kanarek, M. S. (1981). Formaldehyde exposure in nonoccupational environments. Arch. Environ. Health. 36(6): 277-284.
Elkiey, T., Ormrod, D. P., and Pelletier, R. L. (1979). Stomatal and leaf surface feature as related to ozone sensitivity of pentunia cultivars. J. Amer. Soc. Hort. Sci. 104:510-515.
Elkiey, T. and Ormrod, D. P. (1980). Sorption of ozone and sulfur dioxide by Petunia leaves. Environ. Exper. Bot. 21: 63-70.
Elkiey, T. and Ormrod, D. P. (1981). Sorption of O3, SO2, NO2 or their mixture by nine Poa pratensis cultivars of differing pollutant sensitivity. Atmosph. Environ. 15: 1739-1743.
Elkiey, T. and Ormrod, D. P., and Marie, B. (1982). Foliar sorption of sulfur dioxide, nitrogen dioxide, and ozone by ornamental woody plants. HortScience. 17:358-360.
Englesberg, E. (1951). The mutagenic action of formaldehyde in bacteria. J. Bacteriol. 63: 1-11.
Fuentes, J. D. and Gillespie, T. J. (1992). A gas exchange system to study the effects of leaf surface wetness on the deposition of ozone. Atmosph. Environ. 26:1165-1173.
Flesch, T. K. and Grant, R. H. (1992). Wind flow within Open-top growth chambers and the gas exchange implications. J. Environ. Qual. 21:49-56.
Flower, D. (1985). Deposition of SO2 onto plant canopies. Pp389-402 in: Sulfur Dioxide and Vegetation. W. E. , H. A. Mooney, and R. A. Goldstein (eds.), Stanford Univ. Press.
Garsed, S. G. (1985). SO2 uptake and transport. pp. 75-79. in Sulfur Dioxide and Vegetation. W. E. Winner, H. A. Mooney, and R. A. Goldstein (eds.) Stanford Univ. Press.
Godish, T. and Rouch, J. (1986). Mitigation of residential formaldehyde contamination by indoor climate control. Am. Ind. Hyg. Assoc. J. 47(12): 792-797.
Godish, T. and Guindon, C. (1989). An assessment of botanical air purification as a formaldehyde mitigation measure under dynamic laboratory chamber conditions. Environ. Pollut. 61: 13-20.
Hanson, P. J and Lindberg, S. E. (1991). Dry deposition of reactive nitrogen compounds: A review of leaf, canopy and non-foliar measurements. Atmosph. Environ. 25A:1615-1634.
Hines, A. L., Ghosh, T. K., Loyalka, S. K., and Warder Jr., R. C. (1993). Indoor Air Quality and Control. 340pp.
Hill, A. C. (1971). Vegetation: A sink for atmospheric pollutants. J. Air Pollut. Control Assoc. 21:341-346.
Hutchinson, G. L., Millington, R. J., and Peters, D. B. (1972). Atmospheric ammonia: Absorption by plant leaves. Science. 175:771-772.
Jensen, E. S. and Pilegaard, K. (1993). Absorption of nitrogen dioxide by barley in open-top chambers. New Phytol. 123:13-19.
Kerstiens, G. and Lendzian, K. J. (1989). Interactions between ozone and plant cuticles I. Ozone deposition and permeability. New Phytol. 112:13-19.
Kondo, T., Hasegawa, K., and Uchida, R. (1995). Absorption of formaldehyde by Oleander (Nerium indicum). Environ. Sci. Technol. 29: 2901-2903.
Krall, A. R. and Tolbert, N. E. (1957). A comparison of the light dependent metabolism of carbon monoxide by barley with that of formaldehyde, formate, and carbon dioxide. Plant Physiology. 32: 321326.
Kull, O. and Moldau, H. (1994). Absorption of ozone on Betula pendula roth leaf surface. Water Air Soil Pollut. 75:79-86.
Lefohn, A. S. (1992). Surface Level Ozone Exposure and Their Effects on Vegetation. Lewis Publishers.
Leuning, R., neumann, H. N., and Thurtell, G. W. (1979). Ozone uptake by corn(Zea mays L.): a general approach. Agricul. Meteor. 20:115-135.
Lin, J. M. and Yao, Y. H. (1993) Formaldehyde in conventional homes in Taiwan. Environmental International. 19: 561-568.
Lommen, P. W., Schwintzer, C. R., and Yocum, C. S. (1971). A model describing photosynthesis in terms of gas diffusion and enzyme kinetics. Planta. 98:195-220.
Macdowall, F. D. H. (1974). Importance of soil in the absorption of ozone by a crop. Can. J. Soil. Sci. 54:239-240.
Mclaughlin, S. B. and Taylor, G. E. (1981). Relative Humidity: Important modifier of pollutant uptake by plants. Science. 211:167-169.
Moldau, H., Kull, O., Sober, J., and Norby, R. J. (1991). Differential response of CO2 uptake parameters of soil and sand-grown Phaseolus vulgaris (L.) plants to absorb ozone flux. Environ. Pollut. 74:251-261.
Murray, A. J. S. (1984). Light affects the deposition of NO2 to the Flacca mutant of tomato without affecting the rate of transpiration. New Phytol. 98:447-450.
National Research Council, Committee on Indoor Pollutants. (1981). Indoor Pollutants. National Academy Press, Washington, D. C.
Neubert, A., Kley, D., Wildt, J., Segschneider, H. J., and Forstel, H. (1993). Uptake of NO、NO2 and O3 by sunflower (Helianthus annuus L.) and tobacco plants (Nicotiana tabacum L.): dependence on stomatal conductivity. Atmosph. Environ. 27A(14):2137-2145.
Nishioka, H. (1973). Lethal and mutagenic action of formaldehyde in Hcr+ and Hcr- strains of Escherichia coli. Mutation Research. 17: 261-265.
Nobel, P. S. (1992). Physicochemical and Environmental Plant Physiology. Academic Press, INC.
Nordman, H., Keskinen, H., and Tuppurainen, M. (1985). Formaldehyde asthma-rare of overlooked? J. Allergy Clin. Immunol. 75:91-99.
Nouchi, I. (1988). Leaf injury of plants and mechanism of injury by photochemical oxidants (ozone and peroxyacetyl nitrate). Bull. Natl. Inst. Agro-Environ. Sci. 5:1-121.
Okano, K., Machida, T., and Totsuka, T. (1988). Absorption of atmospheric NO2 by several herbaceous species: estimation by the 15N dilution method. New Phytol. 109:203-210.
Okano, K., Machida, T., and Totsuka, T. (1989). Differences in ability of NO2 absorption in various broad-leaved tree species. Environ. Pollut. 58:1-17.
Okano, K., Tobe, K., and Furukawa, A. (1990). Foliar uptake of peroxyacetyl nitrate (PAN) by herbaceous specie varying in susceptibility to this pollutant. New Phytol. 114:139-145.
Olsen, J. H. and Dossing, M. (1982). Formaldehyde induced symptoms in day care centers. Am. Ind. Hyg. Assoc. J. 43: 366-370.
Olszyk, D. M. and Tingey, D. T. (1985). Interspecific Variation in SO2 Flux. Plant Physiol. 79:949-959.
Porter, J. A. H. (1975). Acute respiratory distress following formalin inhalation. Lancet. p. 603.
Porter, L. K., Viets, F. G., Jr., and Hutchinson, G. L. (1972). Air containing nitrogen-15 ammonia: Foliar absorption by corn seedling. Science. 175-759-761.
Poverennyi, A. M., Siomin, Y. A., Saenko, A. S., and Sinzinis, B. I. (1975). Possible mechanisms of lethal and mutagenic action of formaldehyde. Mutation Research. 27: 123-126.
Rich, S., Waggoner, P. E., and Tomlinson, H. (1970). Ozone uptake by bean leaves. Science. 169:79-80.
Ritchie, I. M. and Lehnen, R. G. (1985). An analysis of formaldehyde concentration in mobile and conventional homes. J. Environ. Health. 47(6):300-305.
Ritchie, I. M. and Lehnen, R. G. (1987). Formaldehyde-related health complaints of residents living in mobile and conventional homes. AJPH. 77(3): 323-328.
Rogers, H. H., Jeffries, H. E., and Stahel, E. P. (1977). Measuring air pollutant uptake by plants: A direct kinetic technique. J. Air Pollut. Contr. Assoc. 27:1192-1197.
Rogers, H. H., Jeffries, H. E., and Witherspoon, A. M. (1979). Measure air pollutant uptake by plants: nitrogen dioxide. J. Environ. Qual. 8:551-557.
Saxe, H. (1986). Stomatal-dependent and stomatal-independent uptake of NOx. New Phytol. 103:199-205
Snow, R., Baker, L., Crews, W., Davis, C. O., Duncan, J., Perry, N., and Siudak, P. (1989). Characterization of emission from a methanol fueled motor vehicle. JAPCA 39: 48-54.
Spedding, D. J. (1969). Uptake of sulphur dioxide by barley leaves at low sulphur dioxide concentrations. Nature. 224:1229-1230.
Srivastava, H. S., Jolliffe, P. A., and Runeckles, V. C. (1975). Inhibition of gas exchange in bean leaves by NO2. Can. J. Bot. 53:466-474.
Sun, E. J. and Su, H. J. (1985). Fluoride injury to rice plants caused by air pollution emitted from ceramic and brick factories. Environ. Pollut. (A)37: 335-342.
Sun, E. J. (1990). Sorption of three major air pollutants by bean plants. Journal of the Environmental protection society of the Republic of China. 13(1):39-50.
Taylor, G. E., and Tingey, D. T. (1983). Sulfur dioxide flux into leaves of Geranium carolinianum L. Plant Physiol. 72:237-244.
Taylor, G. E.Jr., McLaughlin, S. B., Jr., Shriner, D. S., and Selvidge, W. J. (1983). The flux of sulfur-containing gases to vegetation. Atmosph. Environ. 17:789-796.
Thomas, M. D., and Hill, G. R. 1935. Absorption of sulphur dioxide by alfalfa and leaf injury. Plant Physiol. 10: 291-307.
Townsend, A. M. (1974). Sorption of ozone by nine shade tree species. J. Amer. Soc. Hort. Sci. 99:205-208.
Unsworth, M. H., Heagle, A. S., and Heck, W. W. (1984). Gas exchange in open-top field chambers-II. Resistance to ozone uptake by soybeans. Atmosph. Environ. 18:381-385.
VanHove, L. W. A., Adema, E. H., Vredenberg, W. J., and Pieters, G. A. (1989). A study of the adsorption of NH3 and SO2 on leaf surfaces. Atmosph. Envitron. 23:1479-1486.
VanHove, L. W. A., Tonk, W. J. M., Pieters, G.A., Adema, E. H., and Vredenberg, W. J. (1988). A leaf chamber for measuring the uptake of pollutant gases at lo concentrations by leaves, transpiration and carbon dioxide assimilation. Atmosph. Environ. 22:2515-2523.
VanHove, L. W. A., Vredenberg, W. J., and Adema, E. H. (1990). The effect of wind velocity, air temperature and humidity on NH3 and SO2 transfer into bean leaves (Phaseolus vulgaris L.) Atmosph. Environ. 24:1263-1270.
Vaughan, T. L., Strader, C., Davis, S., and Daling, J. R. (1986). Formaldehyde and cancers of the pharynx, sinus and nasal cavity: I. Occupational exposures. Int. J. Cancer. 38: 677-683.
Wesely, M. L. and Hicks, B. B. (1977). Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. J. Air Pollut. Contr. Assoc. 27:1110-1116.
Whitehead, D. C. and Lockyer, D. R. (1987). The influence of the concentration of gaseous ammonia on it’s uptake by leaves of Italian ryegrass, with and without an adequate supply of nitrogen to the roots. J. Exp. Bot. 38:818-827.
Wilkins, R. J. and Macleod, H. D. (1976). Formaldehyde induced DNA-Protein crosslinks in Escherichia coli. Mutation Research. 36: 11-16.
Wolverton, B. C., McDonald, R. C., and Watkins, Jr., E. A. (1984). Foliage plants for removing indoor air pollutants from energy-efficient homes. Economic Botany. 38(2): 224-228.
Wolverton, B. C. and Wolverton, J. (1992). Interior Plants And Their Role In Indoor Air Quality: An Overview. Wolverton environmental services, Inc. Research laboratory, Mississippi.
Zhang, J., He, Q., and Lioy, P. J. (1994). Characteristics of aldehydes: concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environ. Sci. Technol. 28: 146-152
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top