跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/13 03:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊敏宗
研究生(外文):Miin-Tzong Yang
論文名稱:低溫逆境抑制綠豆幼苗葉片細胞核基因之表現及質體發育
論文名稱(外文):Chilling Stress Represses Nuclear Gene Expressions and Plastid Development in Leaves of Chilling-Sensitive Mungbean Seedlings
指導教授:陳益明陳益明引用關係
指導教授(外文):Yih-Ming Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:植物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:179
中文關鍵詞:低溫逆境黃化幼苗黃化體集光複合體二光合作用低溫抑制型基因低溫處理免疫轉印分析
外文關鍵詞:chilling stressetiolated seedlingetioplastLHC IIphotosynthesiscold-suppressed genechilling-treatmentimmunoblotting
相關次數:
  • 被引用被引用:4
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
綠豆(Vigna radiata L. v. 2937)屬於不耐寒植物,本篇論文旨在探討低溫逆境對綠豆幼苗之負面影響,包括黃化體(etioplasts)發育、葉綠體構造及細胞核基因與蛋白質表現等。28℃黑暗中生長之黃化幼苗,以10℃低溫光照處理後,初生葉仍維持黃化現象,不因接受光照而轉為綠色,但黃化葉片仍會隨著生長天數而逐漸展開,完全展開約需15天。此外,下胚軸亦不再快速延長。以電子顯微鏡觀察低溫光照處理之黃化葉片細胞,發現黃化體並不會發育為葉綠體,且隨著處理時間之增長,所受傷害也越趨嚴重。其傷害情形包括澱粉粒消失、前層體(prolamellar bodies)之膜系由類結晶構造轉為散亂不規則狀。另外,內膜(inner membrane)、類囊膜(thylakoid membrane)及前層體外圍膜系均逐漸產生許多小囊胞(vesicles)。處理七天後,小囊胞已普遍存在於各黃化體中。小囊胞會互相融合而形成較大之液胞(vacuole)。有些黃化體則死亡,形成雙層膜之液胞構造。然即使經過15天之低溫處理,當移入28℃光照後,未死亡之黃化體仍能發育為成熟之葉綠體。28℃光照下生長之綠色植株,經10℃低溫光照處理4天後,葉綠體內之澱粉粒亦會消失,且有些細胞內之葉綠體已出現崩潰瓦解。
以SDS膠體電泳(SDS-PAGE)分析28℃光照和10℃光照下生長之葉片蛋白質,發現有5種蛋白質經低溫處理而明顯累積,其分子量分別為82.3 kD、66 kD、34.1 kD、29 kD及27.6 kD ;另有10種蛋白質則因低溫處理而受抑制,其分子量分別為51 kD、42.5 kD、33 kD、30 kD、28.5 kD、27.2 kD、26.3 kD、24.8 kD、24 kD、14.3 kD。這些合成量減少之蛋白質,與葉綠體蛋白質比較結果,發現大多數應屬於葉綠體蛋白質,包括膜蛋白(33 kD、30 kD、28.5 kD、27.2 kD、26.3 kD、24.8 kD)及基質蛋白(51 kD、42.5 kD、24 kD、14.3 kD)。
為瞭解低溫逆境對葉片細胞核基因表現之負面影響,以28℃照光生長葉片之poly(A)+ mRNAs,建立一cDNA library,再以差異式篩選法(differential screening)篩選受低溫抑制之基因,共找出13個不同之基因,其中有12個基因,係合成葉綠體蛋白質,包括與光反應有關之PORB、Lhcb 1、Lhcb 2、Lhcb 3、Lhcb 4、Lhcb 6、PS I-F,及與暗反應有關之carbonic anhydrase、rubisco activase及RbcS。第13個基因則合成cytochrome P450(CYP90A2)蛋白質。這13個基因在10℃低溫光照或低溫黑暗處理之黃化幼苗葉片中,幾乎都沒有任何表現。而28℃照光生長之綠色幼苗,經10℃低溫光照處理2天後,這些基因之表現量亦明顯降低。處理第5天後,幾已無表現。經10℃光照處理9天之黃化幼苗,移入28℃光照後,原受抑制之13個基因均能恢復正常表現,開始表現之時間約於回溫5小時後,然大量表現之時間並不一致。其中,與暗反應有關之基因(carbonic anhydrase、rbcS及rca)於回溫13個小時內,均已有大量累積。而與光反應有關之基因,則以porB大量表現之時間最早,約在照光13小時後。而lhcb1、lhcb2、lhcb3、lhcb4、lhcb6大量表現之時間最晚,約在照光33個小時後。低溫光照處理5天之綠色植株,移回28℃光照後,原受抑制之13個基因亦均能回復表現。13個基因於低溫下表現量降低之原因,經細胞核轉錄活性試驗分析結果,發現是由於轉錄作用受到抑制。
為進一步探討低溫逆境對光合作用相關蛋白質之負面影響,於13個基因中,選擇與光反應有關之基因(porB、lhcb1),及與暗反應有關之基因(rbcS、rca),製造GST融合蛋白質,再誘導產生抗體,並進行免疫轉印分析。由結果顯示,經低溫光照處理之黃化幼苗,其PORB、Lhcbs、RbcS及RCA之含量均極低或無法測得,然於回溫後均可逐漸累積。而綠色幼苗經低溫光照處理5天後,PORB及RCA亦均無法測得,Lhcbs之含量則明顯降低,而回溫後,亦會逐漸累積。綠色幼苗經低溫照光處理後,RbcS含量並無明顯變化。另外,由結果亦得知,綠豆除PORB外,尚含有PORA。在28℃黑照中生長之黃化幼苗,其PORA及PORB均有大量累積情形。將黃化幼苗移入10℃黑暗中處理9天後,其PORA及PORB仍維持大量累積,並不因低溫處理而減少,顯示於黑暗下,PORA及PORB均相當穩定。黃化幼苗經低溫光照處理後,PORA並不會消失,但綠色幼苗經低溫光照處理後,PORA與PORB一樣,亦無法測得。
The mungbean (Vigna radiata L. v. 2937) is a chilling-sensitive plant. Etiolated leaves of mungbean seedlings grown in the dark fail to turn into green after shifted to light and cold (10℃) environment. The negative effects of chilling temperature on mungbean leaves were investigated from three aspects: ultrastructural alterations, screening of cold-suppressed (cos) nuclear genes, and Western blotting. Development of etioplast was suppressed by chilling treatment. Furthermore, many tiny vesicles or a larger vacuole were formed in the etioplast after prolong chilling, and the etioplast may die and become a double-membraned vacuole. Chloroplasts also disintegrated after prolong chilling. By SDS-PAGE analysis, it was found that 5 proteins accumulated (82.3 kD, 66 kD, 34.1 kD, 29 kD, 27.6 kD) and 10 proteins decreased (51 kD, 42.5 kD, 33 kD, 30 kD, 28.5 kD, 27.2 kD, 26.3 kD, 24.8 kD, 24kD, 14.3 kD) in the cold- and light-treated etiolated leaves. A cDNA library was constructed from poly(A)+ mRNAs of 28℃-light-grown leaves for screening cos genes. Thirteen full-length cDNA clones were obtained, and 12 clones encode chloroplast proteins, including Lbcb1, Lhcb1*2, Lhcb1*3, Lhcb2, Lhcb3, Lhcb4, Lhcb6, PORB, PSI-F, carbonic anhydrase, RbcS and RCA. Another cos cDNA encodes CYP90A2, which is a cytochrome P450 protein. Accumulations of all these 13 gene transcripts were severely suppressed in 10℃-light-grown etiolated seedlings. The levels of all these 13 gene transcripts were also remarkably decreased in cold-treated green seedlings. By nuclear runoff transcription assays, it was demonstrated that the reductions of all these 13 gene transcripts were caused by decreased transcription rates. Suppression of all these 13 gene expressions is reversible when the growth condition is permissive. The polyclonal antibodies against PORB, Lhcb1, RbcS and RCA proteins were successfully prepared. Anti-PORB was found to cross-react with PORA, and anti-Lhcb1 was found to cross-react with other Lhcb proteins. Western blotting analyses show that PORB, Lhcb proteins, RbcS and RCA are either very little or undetectable in the 10℃-light-grown etiolated seedlings. In cold-treated green seedlings, PORB, Lhcb proteins and RCA are also decreased to either very little or undetectable level, while RbcS level has no apparent change. PORA level is very stable in cold-treated etiolated seedlings, but also decreases to undetectable level in cold-treated green seedlings.
目 錄
英文摘要…………………………..…..………………...………….1
中文摘要……………………………..…………………….……….3
英文縮寫…………………………………………………...……….5
前 言
一、概 說…………………………………..……….…….…7
二、低溫逆境之定義……………….……..……….…………9
三、低溫對植物之傷害…………………..…………..……..10
四、植物適應低溫之機制.…………………………..…..…..16
五、光對植物幼苗生長之影響.………….………………….19
六、葉綠體發育及光反應……………………..…….…....…22
材 料 與 方 法
一、材 料…………………………………………….…......24
二、方 法
(一)電顯切片………………………………………...…24
(二)蛋白質抽取…………………………………………30
(三)蛋白質電泳……………………………………..…..32
(四)硝酸銀染色…………………..……………………..36
(五)分離總RNA ……………..…..…………………….37
(六)分離poly(A)+ mRNA………………..……………..38
(七)建構cDNA library………………………..………..39
(八)重組噬菌體效價測定……………………..……….47
(九)差異式篩選……………………………………..….48
(十)將cDNA insert轉入E. coli JM109…...…………..54
(十一)DNA定………………………………………..…57
(十二)利用RACE技術合成全長之基因……….…..…62
(十三)細胞核轉錄活性分析..……………………..……66
(十四)製造融合蛋白質…………………………..…..…70
(十五)製備抗體……………………………………….…77
(十五)西方墨點轉印分析…………………………….…78
結 果
一、低溫光照下生長之綠豆黃化幼苗外觀……..……………81
二、低溫逆境對綠豆黃化體發育及葉綠體構造之影響……..82
三、低溫處理影響葉片蛋白質之合成……………..…………84
四、低溫抑制型基因之篩選……………………………..……85
五、選殖clones之定序結果……………………..……….…...88
六、 利用RACE技術合成全長之cDNA…………………….89
七、低溫抑制型基因之比較分析結果…………..……….…...91
八、rubisco activase cDNA 3''-端序列之分析……………..…..92
九、低溫抑制型基因於常溫、低溫及回溫後之表現………..93
十、細胞核轉錄活性分析..……………………….……….…..96
十一、製備抗體探討低溫對蛋白質合成之影響…………..…96
討 論……………………………………….…………………..99
結 語…………………………..………………………………109
附 錄 一……………………………….………….………………153
附 錄 二..………………………………..……………………….154
附 錄 三…………………………………...……………………..161
參 考 文 獻…………………………….………………………...…..164
參 考 文 獻
陳家全、李家維、楊瑞森(1991)生物電子顯微鏡學。行政院國家科學委員會精密儀器發展中心編印
陳益明(1987)蛋白質雙向電泳分析法:電泳分離技術研討會專集。國立中興大學遺傳工程中心主辦,國科會生物中心協辦。 P25-33
陳淑玲 (1999) 冷溫逆境影響綠豆(Vigna radiata L.)幼苗葉片顆粒體發育及其基因表現。國立臺灣大學植物學研究所博士論文
陳淑玲、楊敏宗、陳益明(2000)豌豆與綠豆幼苗受低溫調控基因之特性分析。科學農業 48; 98-105
馬淑芳(1988)低溫逆境對耐寒和不耐寒植物之外部形態、內部細微構造和蛋白質合成的比較。國立臺灣大學植物學研究所碩士論文
林綠瑩(1989)低溫逆境對綠豆白化幼苗生長、根尖顯微構造、及細胞膜、液胞膜的影響。國立臺灣大學植物學研究所碩士論文
楊敏宗(1991)低溫逆境下綠豆白化幼苗之RNA polymerases活性與蛋白質合成的探討。國立臺灣大學植物學研究所碩士論文
Aguan K, Sugawara K, Suzuki N, Kusano T (1993) Low-temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol Gen Genet 24: 1-8
Ahmad M, Cashmore AR (1996) Seeing blue: the discovery of cryptochrome. Plant Mol Biol 30: 851-861
Ahmad M, Cashmore AR (1993) HY4 gene of A. thaliana encodes a protein with characteristics of a blue-light photoreceptor. Nature 366: 162-166
Allen JF (1992) Protein phosphorylation in regulation of photosynthesis. Biochem Biophys Acta 1098: 275-335
Armstrong GA, Runge S, Frick G, Sperling U, Apel K (1995) Identification of NADPH:protochlorophyllide oxidoreductases A and B branched pathway for light-dependent chlorophyll biosynthesis in Arabidopsis thaliana. Plant Physiol 108: 1505-1517
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidmon JG, Smith JA, Struhl K (1987) Current Protocols in Molecular Biology. Greene Publishing Associates, Wiley Interscience, New York
Bak S, Tax FE, Feldmann KA, Galbraith DW, Feyereisen R (2001) CYP83B1, a cytochrome P450 at the metabolic branch point in auxin and indole glucosinolate biosynthesis in Arabidopsis. Plant Cell 13: 101-111
Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought-, and ABA regulated gene expression. Plant Mol Biol 24: 701-713
Bantle JA, Maxwell IH, Hahn WE (1976) Specificity oligo(dT)-cellulose chromatography in the isolation of polyadenylated RNA. Anal Biochem 72: 413-427
Barlier I, Kowakzyk M, Marchznt A, Ljung K, Bhalerar R, Bennett M, Sandberg G, Bellini C (2000) The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc Natl Acad Sci USA 97: 14818-14824
Barnes SA, McGrath RB, Chu N-H (1997) Light signal transduction in plants. Trends Cell Biol 7: 21-26
Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60: 43-73
Bishop GJ, Nomura T, Yokota T, Harrison K, Noguchi T, Fujioka S, Takatsuto S, Jones JDG, Kamiya Y (1999) The tomato DWARF enzyme catalyzed C-6 oxidation in brassinosteroid biosynthesis. Proc Natl Acad Sci USA 96: 1761-1766
Blum H, Beier H, Gross HJ 1989 Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8:93-99
Bray EA (1997) Plant responses to water deficit. Trend Plant Sci 2: 48-54
Casal JJ (2000) Phytochromes, cryptochromes, phototropin: photoreceptor interactions in plants. Photochem Photobiol 71: 1-11
Cerdan PD, Staneloni RJ, Ortega J, Bunge MM, Rodriguez-Batiller MJ, Sanchez RA, Casal JJ (2000) Sustained but not transient phytochrome A signaling targets a region of an Lhcb1*2 promotor not necessary for phytochrome B action. Plant Cell 12: 1203-1211
Chapple C (1998) Molecular-genetic analysis of plant cytochrome P450-dependent monooxygenases. Annu Rev Plant Physiol Plant Mol Biol 49: 311-343
Chen YM, Liu HF, Lin CY (1991) Chilling stress effects on the growth, mitochondrial activity and protein synthesis in etiolated mungbean seedlings. Taiwania 36: 277-290
Chenchik A, Zhu Y, Diatchenko LR, Hill J, Siebert P (1998) Generation and use of high-quality cDNA from small amounts of total RNA by SMART PCR. In RT-PCR Methods for Gene Cloning and analysis. Eds. Siebert P & Larrick J (Bio Techniques Books, MA), pp 305-319
Chitnis PR, Purvis D, Nelson N (1991) Molecular cloning and targeted mutagenesis of the gene psaF encoding subunit III of photosystem I from the cyanobacterium Synechocystis sp. PCC6803. J Biol Chem 266: 20146-20151
Choe S, Dilkes BP, Fujika S, Takatsuto S, Sakurai A and Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates mutiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10: 231-243
Choi HI, Hong JH, Ha JO, Kang JY, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol chem 275: 1723-1730
Choung PV, Omura T (1982) Studies on the chlorosis expressed under low temperature in rice, Oryza sativa L. In Bulletin of the Institute for Tropical Agriculture, Vol 5. Kyusyu University, Fukuoka, Japan, pp 1-58
Chun L, Kawakami A, Christopher DA (2001) Phytochrome A mediates blue light and UV-A-dependent chloroplast gene transcription in green leaves. Plant Physiol 125: 1957-1966
Clouse S, Sasse J (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49: 427-451
Cooper P, Ort DR (1987) The effect of chilling on the production of phytosystem II light harvesting chlorophyll a/b binding protein in tomato. In Plant Gene Systems and Their Biology. Edited by Key JL and McIntosh L. New York: A. R. Liss. pp 353-362
De Robertis EDP, De Robertis EMF (1987) Plant cell-chloroplast and photosynthesis. In Cell and Molecular Biology. Lea & Febiger, Washington Squal, Philadelphia, PA USA. pp 325-354
Du Y-C, Nose A, Wasano K (1999) Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ 22: 317-324
Durst F, Nelson DR (1995) Diversity and evolution of plant P450 and P450-reductase. Drug Metab Drug Interact 12: 189-206
Eaks IL (1960) Physiological studies of chilling injury in citrus fruits. Plant Physiol 35: 632-636
Eaks IL, Morris LL (1956) Respiration of cucumber fruits associated with physiological injury at chilling temperatures. Plant Physiol 33: 308-314
Emaus D, Fenton R, Wilson JM (1982) Stomatal behaviour and water relations of chilled Phaseolus vulgaris L. and Psium sativum L. J Exp Bot 33: 434-441
Emaus D, Wilson JM (1983) ABA levels and effects in chilled and hardened Phaseolus vulgaris. J Exp Bot 34: 1000-1006
Erling TS, Lindberg MB, Vibe S (1999) Photoinhibition of photosystem I damages both reaction centre proteins PS I-A and PS I-B and acceptor-side located small photosystem I polypeptides. Photosynthesis Research. 61: 75-86
Fankhauser C, Chory J (1997) Light control of plant development. Annu Rev Cell Dev Biol 13: 203-229
Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD (1995) Isolation of a psaF-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the PsaF subunit. J Biol Chem 269: 3205-3211
Fish LE, Jagendorf AT (1982) High rates of protein synthesis by isolated chloroplasts. Plant Physiol. 70: 1107-1114.
Franzén LG, Frank G, Zuber H, Rochaix JD (1989) Isolation and characterization of cDNA clones encoding the 17.9 and 8.1 kDa subunits of photosystem I from Chlamydomonas reinhardtii. Plant Mol Biol 12: 463-474
Fujita Y (1996) Protochlorophyllide reduction: a key step in the greening of plants. Plant Cell Physiol 37: 411-421
Gallagher TF, Ellis RJ (1982) Light-stimulated transcription of genes for two chloroplast polypeptides in isolated pea leaf nuclei. EMBO J 1: 1493-1498
Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124: 1854-65
Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Ann Rev Plant Physiol 33: 347-372
Graham D, Hockley DG, Patterson BD (1979) Temperature effects on phosphoenol pyruvate carboxylase from chilling sensitive and chilling resistant plants. In Low Temperature Stress in Crop Plants: The Role of the Membrane. Edited by Lyons JM, Graham D, Rasion JK New York: Academic Press. pp 453-462
Green BR, Pichersky E, Kloppstech K (1991) Chlorophyll a/b binding proteins: an extended family. Trends Biochem Sci 16: 181-186
Griffiths WT (1978) Reconstitution of chlorophyllide formation by isolated etioplasts membranes. Biochem J 174: 681-692
Griffiths WT (1991) Protochlorophyllide reduction. In Chlorophylls. H Scheer, ed (Boca Raton, FL: CRC press), pp 433-449
Grossman A, Bartlett S, Chua NH (1980) Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285: 625-628
Gubler V, Hoffman BJ (1983) A simple and very efficient method for generating cDNA libraries. Gene 25:263-269
Gupta AS, Heinen JL, Holaday AS, Burke JJ, Allen RD (1993) Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic copper-zinc superoxide dismutase. Proc Natl Acad Sci USA 90: 1629-1633
Guy CL (1990) Cold acclimation and freezing stress tolerance: role of protein metabolism. Annu Rev Plant Physiol Plant Mol Biol 41: 187-223
Guy CL, Niemi KJ, Braml R (1985) Altered gene expression during cold acclimation of spinach. Proc Natl Acad Sci USA 82: 3673-3677
Guye MG, Vigh L, Wilson JM (1987) Choline induced chill-tolerance in mung bean Vigna Radiata L. Wilcz. Plant Sci 53: 223-228
Hahn M, Walbot V (1989) Effects of cold-treatment on protein synthesis and mRNA levels in rice leaves. Plant Physiol 91: 930-938
Hajela RK, Horvath DP, Gilmour SJ, Thomashow MF (1990) Molecular cloning and expression of cor (cold-regulated) genes in Arabidopsis thaliana. Plant Physiol 93: 1246-1252
Haldrup A, Naver H, Scheller HV (1999) The interaction between plastocyanin and photosystem I is inefficient in transgenic Arabidopsis plants lacking the PS I-N subunit of photosystem I. Plant J 17: 689-698
Haldrup A, Simpson DJ, Scheller HV (2000) Down-regulation of the PS I-F subunit of photosystem I (PS I) in Arabidopsis thaliana. J Biol Chem 275: 31211-31218
Haldimann P (1998) Low growth temperature-induced changes to pigment composition and photosynthesis in Zea mays genotypes differing in chilling sensitivity. Plant Cell Environ 21: 200-208
Haldimann P (1999) How do changes in temperature during growth affect leaf pigment composition and photosynthesis in Zea mays genotypes differing in sensitivity to low temperature? J Exp Bot 50: 543-550
Hankamer B, Barber J (1997) Structure and membrane organization of photosystem II in green plants. Annv Rev Plant Physiol Plant Mol Biol 48: 641-671
Havaux M, Tardy F (1997) Thermostability and photostability of photosystem II in leaves of the Chlorina-f2 barley mutant deficient in light-harvesting chlorophyll a/b protein complexes. Plant Physiol 113: 913-923
Hayden DB, Baker NR, Percival MP, Beckwith PB (1986) Modification of the photosystem II light-harvesting chlorophyll a/b protein complex in maize during chill-induced photoinhibition. Biochim Biophys Acta 851: 86-92
He ZY, Chitnis VP, Chitnis PR, NechushtaiR (1998) Molecular cloning of the psaF and psaJ genes of photosystem I from the thermophilic cyanobacterium Mastigocladus laminosus. Plant Physiol 116: 868
Helliwell CA, Chandler PM, Poole A, Dennis ES, Peacock WJ (2001) The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthesis pathway. Proc Natl Acad Sci USA 98: 2065-2070
Helliwell CA, Poole A, Peacock WJ, Dennis ES (1999) Arabidopsis ent-kaurene oxidase catalyzes three steps of gibberellin biosynthesis. Plant Physiol 119: 507-10
Hippler M, Drepper F, Haehnel W, and Rochaix J -D (1998) The N-terminal domain of PsaF: precise recognition site for binding and fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 95: 7339-7344
Hippler M, Ratajczak R, Haehnel W (1989) Identification of the plastocyanin binding subunit of photosystem I. FEBS Lett 250: 280-284
Hippler M, Reichert J, Sutter M, Zak E, Altschmied L, Schröer U, Herrmann RG, Haehnel W (1996) The plastocyanin binding domain of photosystem I. EMBO J 15: 6374-6384
Hisada A, Hanzawa H, Weller JL, Nagatani A, Reid JB, Furuya M (2000) Light-induced nuclear translocation of endogenous pea phytochrome A visualized by immunocytochemical procedures. Plant Cell 12: 1063-1078
Holtorf H, Apel K (1996) Transcripts of the two NADPH-protochlorophyllide oxidoreductase genes porA and porB are differentially degraded in etiolated barley seedlings. Plant Mol Biol 31: 387-392
Holtorf H, Reinbothe S, Reinbothe C, Bereza B, Apel K (1995) Two routes of chlorophyllide synthesis that are differentially regulated by light in barley (Hordeum vulgare L.). Proc Natl Acad Sci USA 92: 3254-3258
Hoober JK, Eggink LL (1999) Assembly of light-harvesting complex II and biogenesis of thylakoid membranes in chloroplasts Photosynth Res 61: 197-215
Hopkins WG (1999) Introduction to Plant Physiology. 2nd ed., JohnWiley and Sons, Inc. NY USA pp 367-389
Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47: 655-684
Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97: 2379-2384
Humbeck K, Melis A, Krupinska K (1994) Effects of chilling on chloroplast development in barley primary foliage leaves. J Plant Physiol 143: 744-749
Ikeuchi M, Murakami S (1983) Separation and characterization of prolamellar bodies and prothylakoids from squash etioplasts. Plant Cell Physiol 24: 71-80
Ishikawa HA (1996) Ultrastructural features of chilling injury: Injured cells and the early events during chilling of suspension-cultured mung bean cells. Amer J Bot 83: 825-835
Irigoyen JJ, De Juan JP, Sanchez-Diaz M (1996) Drought enhances chilling tolerance in a chilling-sensitive maize (Zea mays) variety. New Phytol 134: 53-59
Jagels R (1970) Photosynthetic apparatus in Selaginella. II. Changes in plastid ultrastructure and pigment content under different light and temperature regimes. Canad J Bot 48: 1853-1860
Jaglo-Ottosen KR, Gilmour SJ, ZarkaDG, Schabenbergr O, Thomashow MF (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106
Janda T, Szalai G, Tari I, Paldi E (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta 208: 175-180
Jansson S (1994) The light harvesting chlorophyll a/b binding proteins. Biochim Biophys Acta 1184: 1-19
Janssons S, Andersen B, Scheller HV (1996) Nearest neighbour analysis of higher plant photosystem I holocomplex. Plant Physiol 112: 409-420
Jung W, Yu O, Lau S-MC, O''Keefe DP, Odell J, Fader G, McGonigle B (2000) Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 18: 208-212
Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17: 287-91
Keegstra K, Olsen LJ (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu. Rev. Plant Physiol. Plant Mol Biol 40: 471-501
Khurana JP, Ren Z, Steinitz B, Parks B, Best TR, Poff KL (1989) Mutants of Arabidopsis thaliana with decreased amplitude in their phototropic response. Plant Physiol 91: 685-689
Kim GT, Tsukaya H, Uchimiya H (1998) The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes and Dev 12: 2381-2391
Kim JC, Lee SH, Cheong YH, Yoo CM, Lee SI, Chun HJ, Yun DJ, Hong JC Lee SY, Lim CO, Cho MJ (2001) A novel cold-inducible zinc finger protein from soybean, SCOF-1, enhances cold tolerance in transgenic plants. Plant J 25: 247-259
Kimball SL, Salisbury FB (1973) Ultrastructural changes of plants exposed to low temperatures. Amer J Bot 60: 1028-1033.
Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schafer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11: 1445-1456
Knoche K, Kephart D (1999) Cloning blunt-end Pfu DNA Polymerase-generated PCR fragments into pGEM-T Vector Systems. Promega Notes 71: 10
Kratsch HA, Wise RR (2000) The ultrastructure of chilling stress. Plant Cell Environ 23: 337-350.
Kro''l M, Ivanov AG, Jansson S, Kloppstech K, Huner NPA (1999) Greening under high light or cold temperature affects the level of xanthophyll-cycle pigments, early light-inducible proteins, and light-harvesting polypeptides in wild-type barley and the Chlorina f2 mutant. Plant Physiol 120:193-203
Kung CCS, Yeh KW, Lin CY, Chen YM (1998) Characterization of a pea gene responsive to low temperature. Bot Bull Acad Sin 39: 9-15
Kurkela S, Franck M (1990)Cloning and characterization of a cold- and ABA-inducible Arabidopsis gene. Plant Mol Biol 15: 137-144
Kuroda H, Masuda T, Fusada N, Ohta H, Takamiya K (2000) Expression of NADPH-protochlorophyllide oxidoreductase gene in fully green leaves of cucumber. Plant Cell Physiol 41: 226-229
Kusano T, Berberich T, Harada M, Suzuki N, Sugawara K (1995) A maize DNA-binding factor with a bZIP motif is induced by low temperature. Mol Gen Genet 248: 507-517
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:213-216
Lebedev N, van Cleve B, Armstrong G, Apel K (1995) chlorophyll synthesis in deetiolated (det340) mutant of Arabidopsis without NADPH-protochlorophyllide (Pchlide) oxidoreductase (POR) A and photoactive Pchlide-F655. Plant Cell 7: 2081-2090
Leheny EA, Theg SM (1994) Apparent inhibition of chloroplast protein import by cold temperatures is due to energetic considerations not membrane fluidity. Plant Cell 6: 427-437
Levitt J (1980) Responses of plants to environmental stresses. Vol. 1. Chilling, freezing and high temperature stresses. 2nd ed. New York: Academic Press
Lewis DA (1961) Protoplasmic streaming in plants sensitive and insensitive to chilling temperatures. Science 124: 75-76
Lewis DA, Morris LL (1956) Effects of chilling storage on respiration and deterioration of several sweet potato varieties. Proc Amer Soc Hort Sci 68: 421-428
Lin C (2000) Plant blue-light receptors. Trends Plant Sci 5: 337-342
Lin C, Thomashow MF (1992)DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol 99: 519-525
Liscum E, Briggs WR (1995) Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7: 473-485
Liscum E, Briggs WR (1996) Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112: 291-296
Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10: 1391-1406
Lotan O, Streubel M, Westhoff P, Nechushtai R (1993) Subunit III (Psa-F) of photosystem I reaction center of the C4 dicotyledon Flaveria trinervia. Plant Mol. Biol. 21: 573-577
Lowery OH, Rosebrough NJ, Farr AL, Kandall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265
Lu G, Paul AL, McCarty DR, Ferl RJ (1996)Transcription factor veracity: is GBF3 responsible for ABA-regulated expression of Arabidopsis Adh? Plant Cell 8: 847-857
Luthe DS, Quatrano RS (1980) Transcription in isolated wheat nuclei. Plant Physiol 65: 305-308
Lyon JM (1973) Chilling injury in plants. Ann Rev Plant Physiol 24: 445-466
Raison JK (1973) The influence of temperature-induced phase changes on kinetics of respiratory and other membrane-associated enzymes. J Bioenerg 4: 258-309
Lyon JM, Raison JK (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45: 386-389
Mandava NB (1988) Plant growth-promoting brassinosteroids. Annu Rev Plant Physiol. Plant Mol Biol 39: 23-52
Markhart AH III (1986) Chilling injury: a review of possible causes. HortScience 21: 1329-1333
Marmiroli N, Terzi V, Odoardi SM, Lorenzoni C, Stanca AM (1986) Protein synthesis during cold shock in barley tissues. Theor Appl Genet 73: 190-196
McWilliam JR, Kramer PJ, Musser RL (1982) Temperature induced water stress in chilling sensitive plants. Aust J Plant Physiol 9: 343-352
Mikkelsen MD, Hansen CH, Wittstock U, Halkier BA (2000) Cytochrome P450 CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic acid. J Biol Chem 275:33712-33717
Millar AJ, Kay SA (1991) Circadian control of cab gene transcription and mRNA accumulation in Arabidopsis. Plant Cell 3: 541-550
Mizutani M, Ward ER, DiMaio J, Ryals JA, Ohta D, Sato R (1993) Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroylase activity. Biochem Biophys Res Commun 190: 875-880
Mullet JE, Arntzen CJ (1980) Simulation of grana stacking in model membrane system mediation by a purified light-harvesting pigment-protein complex from chloroplasts. Biochim Biophys Acta 589: 100-117
Murphy C, Wilson JM (1981) Ultrastructural features of chilling-injuries in Episcia reptans. Plant Cell Environ 4: 261-265
Musser RL, Thomas SA, Wise RR, Peeler T, Naylor AW (1984) Chloroplast ultrastructure, chlorophyll fluorescence, and pigment composition in chilling-stressed soybeans. Plant Physiol 74: 749-754
Nagy F, Kircher S, Schafer E (2001) Intracellular trafficking of photoreceptors during light-induced signal transduction in plants. J Cell Sci 114: 475-480
Nebert DW, Gonzalez FJ (1987) P450 genes: structure, evolution, and regulation. Annu Rev Biochem 56: 945-993
Nelson DR (1998) Methods in Molecular Biology. Vol. 107. Cytochrome P450 Protocols, IR Phillips and EA Shephard eds. Humana Press, Totowa, New Jersey, pp. 15-24
Nelson DR, Kamataki T, Waxman DJ, Peter G, Estabrook RW, Feyereisen R, Gonzalez FJ, Coon MJ, Gunsalus IC, Gotoh O, Okuda K, Nebert DW (1993) The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trival names of enzymes, and nomenclature. DNA Cell Biol 12: 1-51
Nie GY, Baker NR (1991) Modifications to thylakoid composition during development of maize leaves at low growth temperatures. Plant Physiol 95: 184-191
Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: The crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47: 541-568
Nordin K, Heino P, Palva ET (1991) Separate signal pathways regulate the expression of a low-temperature-induced gene in Arabidopsis thalina (L.) Heynh. Plant Mol Biol 16: 1061-1071
O''Farrell PH (1975) High resolution two-dimensional electrophoresis of proteins. J Biochem 250:4007-4021
Oku T, Sugahara K, Tomita G (1974) Functional development of photosystems I and II in dark grown pine seedlings. Plant Cell Physiol 15: 175-178
Pattern BD, Mutton L, Paull RE, Nguyen VQ (1987) Tomato pollen development: stages sensitive to chilling and a natural environment for the selection of resistant genotypes. Plant Cell Environ 10: 363-368
Pike CS, Berry JA (1980) Membrane phospholipid phase seperations in plants adapted to or acclimated to different thermal regimes. Plant Physiol 66: 238-241
Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wanger D (1995) Phytochromes: photosensory perception and signal transduction. Science 268: 675-680
Roesler KR, Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii ribulose 1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide. Plant Physiol 94: 1837-1841
Rost B, Sander C (1994) Conservation and prediction of solvent accessibility in protein families. Proteins 20: 216-226
Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232: 584-599
Rundle SJ, Zielinski RE (1991) Organization and expression of two tandemly oriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem 266:4677-4685
Ryberg M, Dehesh K (1986) Localization of NADPH-protochlorophyllide oxidoreductase in dark-grown wheat (Triticum aestivum) by immunoelectron microscopy before and after transformation of prolamellar bodies. Physiol Plant 66: 616-624
Ryberg M, Sundqvist C (1991) Structural and functional significance of pigment-protein complexes of chlorophyll precursors. In Chlorophylls, H Scheer, ed (Boca Raton, FL: CRC Press), pp. 587-612
Ryrie IJ, Anderson JM, Goodchild DJ (1980) The role of the light-harvesting chlorophyll a/b-protein complex in chloropst membrane stacking. Eur J Biochem 107: 345-354
Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23: 319-27
Salvucci ME, Werneke JM, Ogren WL, Portis AR Jr (1987) Purification and species distribution of rubisco activase. Plant Physiol 84: 930-936
Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
Sanger FS, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors Proc Natl Acad Sci USA 74: 5463-5467
Sarhan F, Danyluk J (1998) Engineerling cold tolerance crops — throwing the master switch. Trends Plant Sci. 3: 289-290
Satake T, Koike S (1983) Sterility caused by cooling treatment at the flowering stage in rice plants. Jpn J Crop Sci 52: 207-213
Scheller HV, Naver H, Møller BL (1997) Molecular aspects of photosystem I. Physiol Plant 100: 842-851
Schleyer M, Neupert W (1985) Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. Cell 43: 339-350
Schneider JC, Nielsen E, Somerville C (1995) A chilling-sensitive mutant of Arabidopsis is deficient in chloroplast protein accumulation at low temperature. Plant Cell Environ 18: 23-32
Schutz I, Furuya M (2001) Evidence for type II phytochrome-induced rapid signalling leading to cab::luciferase gene expression in tobacco cotyledons. Planta 212: 759-764
Scott MP, Nielsen VS, Knoetzel J, Andersen R, Møller BL (1994) Import of the barley PS I-F subunit into the thylakoid lumen of isolated chloroplasts. Plant Mol Biol 26: 1223-1229
Shen JB, Orozco EM Jr, Ogren WL (1991) Expression of the two isoforms of spinach ribulose 1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem 266: 8963-8.
Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327-334
Smith DB, Johnson KS (1988) Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31-40.
Song WC, Funk CD, Brash AR (1993) Molecular cloning of an allene oxide synthase: a cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc Natl Acad Sci USA 90: 8519-8523
Sonoike K, Terashima I, Iwaki M, Itoh S (1995) Destruction of photosystem I iron-sulfur centers in leaves of Cucumis sativus L. by weak illumination at chilling temperatures. FEBS Lett 362: 235-238
Spano AJ, He Z, Michael H, Hunt DF, Timko MP (1992) Molecular cloning, nuclear gene structure, and developmental expression of NADPH:protochlorophyllide oxidoreductase in pea (Pisum sativum L.) Plant Mol Biol 18: 967-972
Steponkus, P. L. 1984. Role of the plasma membrane in freezing injury and cold acclimation. Ann Rev Plant Physiol 35: 543-584
Steppuhn J, Hermans J, Nechushtai R, Ljungberg U, Thummler F, Lottspeich F, Herrmann RG (1988) Nucleotide sequence of cDNA clones encoding the entire precursor polypeptides for subunits IV and V of the photosystem I reaction center from spinach. FEBS Lett 237: 218-224
Stockinger EJ, Glimour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94: 1035-1040
Streb P, Shang W, Feierabend J (1999) Resistance of cold-hardened winter rye leaves (Secale cereale L.) to photo-oxidative stress. Plant Cell Environ 22: 1211-1223
Sugiyama T, Schmitt MR, Ku SB, Edwards GE (1979) Differences in cold cability of pyruvate Pi dikinase among C4 species. Plant Cell Physiol 20: 965-971
Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schll J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85: 171-182
Taft EB (1951) The specificity of the methyl green-pyronin syain for nucleic acids. Exp Cell Res 2: 312-326
Takio S, Takami S, Hino S (1988) Photosynthetic ability of dark-grown Marchantia paleacea cells in suspension culture. J Plant Physiol 132: 195-198
Taylor AO, Craig AS (1971) Plants under climatic stress. II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol 47: 719-725
Teicher HB, Møller BL, Scheller HV (2000) Photoinhibition of photosystem I in field-grown barley (Hordeum vulgare L.): Induction, recovery and acclimation. Photosynth Res 64: 53-61
Terashima I, Funayama S, Sonoike K (1994) The site of inhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193: 300-306
Terashima I, Kashino Y, Katoh S (1991) Exposure of leaves of Cucumis sativus L. to low temperatures in the light causes uncoupling of thylakoids I. studies with isolated thylakoids. Plant Cell Physiol 32: 1267-1274
Terashima I, Noguchi K, Itoh-Nemoto T, Park Y-M, Kubo A, Tanaka K (1998) The cause of PS I photoinhibition at low temperatures in leaves of Cucumis sativus, a chilling-sensitive plant. Physiol Plant 103: 295-303.
Theg SM, Bauerle C, Olsen LJ, Seiman BR Keegstra K (1989) Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. J Biol Chem 264: 6730-6736
Thomashow MF (1994) Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. In Arabidopsis. (Meyerowiwitz E and Somerville C, eds). Cold Spring Harbor: Cold Spring Harbor Labortory Press, pp 807-834
Thomashow MF (2001) So what’s new in the field of plant cold acclimation? Lots! Plant Physiol 125: 89-93
Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann Rev Physiol Plant Mol Biol 50: 571-599
Thomashow, MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118: 1-7
Tjus ES, Møller BL, Scheller HV (1998) Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures. Plant Physiol 116: 755-764
Tjus ES, Møller BL, Scheller HV (1999) Photoinhibition of photosystem I damages both reaction centre proteins PS I-A and PS I-B and acceptor-side located small photosystem I polypeptides. Photosynth Res 60: 75-86
To KY, Suen DF, Chen SCG (1999) Molecular characterization of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209: 66-76.
Sakamoto T, Shen G, Higashi S, Murata N, Bryant D (1998) Alteration of low-temperature susceptibility of the cyanobacterium Synechococcus sp. PCC 7002 by genetic manipulation of membrane lipid unsaturation. Arch Microbiol 169: 20-28
Venema JH, Posthumus F, de Vries M, van Hasselt PR (1999) Differential response of domestic and wild Lycopersicon species to chilling under low light: Growth, carbohydrate content, photosynthesis and the xanthophyll cycle. Physiol Plant 105: 81-88
Verheul MJ, Picatto C, Stamp P (1996) Growth and development of maize (Zea mays L.) seedlings under chilling conditions in the field. Eur J Agron 5: 31-43
Wang CY (1982) Physiological and biochemical responses of plants to chilling stress. HortScince 17:173-186
Wang H, Datla R, Georges F, Loewen M, Cutler AJ (1995)Promotors from kin1 and cor6.6, two homolgous Arabidopsis thaliana genes: transcriptional regulation and gene expression induced by low temperature, ABA, osmoticum and dehydration. Plant Mol Biol 28: 605-617
Wheaton TA (1963) Physiological comparasions of plants sensitive and insensitive to chilling temperatures. PhD Thesis Univ of Calif, Davis
Whitfeld PR, Bottomley W (1983) Organization and structure of chloroplast genes. Ann Rev Plant Physiol 34: 279-310
Wickner W, Driessen AJM, Hartl FU (1991) The enzymology of protein translocation across the Escherichia coli plasma membrane. Ann Rev Biochem 60: 101-124
Wilson JM (1976) The mechanism of chill- and drought-hardening of Phaseolus vulgaris leaves. New Phytol 76: 257-270
Wilson JM (1978) Leaf respiration and ATP levels at chilling temperatures. New Phytol 80: 325-334
Wilson JM, Crawford RMM 1974. The acclimatization of plants to chilling temperatures in relation to fatty-acid composition of leaf polar lipids. New Physiol 73: 805-820
Winkler RG, Helentjaris T (1995) The maize dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7: 1307-1317
Wise RR, McWilliam J, Naylor AW (1983) A comparative study of low-temperature-induced ultrastructural alterations of three species with differing chilling sensitivities. Plant Cell Environ 6: 525-535
Wolfgang B (1992) Low-temperature limitions of photosynthesis in three tropical Vigna species: A chlorophyll fluorescence study. Photosyn Res 34: 301-310
Wolfraim LA, Langis R, Tyson H, Dhindsa RS (1993)cDNA sequence, expression, and transcript stability of a cold acclimation-specific gene, cas18, of alfalfa (Medicago falcata) cells. Plant Physiol 101: 1275-1282
Wynn RM, Luong C, Malkin R (1989) Maize photosystem I: identification of the subunit which binds plastocyanin. Plant physiol 91: 445-449
Wynn RM, Malkin R (1988) Interaction of plastocyanin with photosystem I: a chemical cross-linking study of the polypeptide that binds plastocyanin. Biochemistry 27: 5863-5869
Xu Q, Yu L, Chitnis VP, Chitnis PR (1994) Function and organization of photosystem I in a cyanobacterial mutant strain that lacks PsaF and PsaJ subunits. J Biol Chem 269: 3205-3211
Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251-264
Yokoi S, Higashi SI, Kishitani S, Murata N, Toriyama K (1998) Introduction of the cDNA for Arabidopsis glycerol-3-phosphate acyltransferase (GPAT) confers unsaturation of fatty acids and chilling tolerance of photosynthesis on rice. Mol Breed 4: 269-275.
Yoshida R, Kanno A., Kameya T (1996) Cool temperature-induced chlorosis in rice plants. Plant Physiol 112: 585-590
Zak E, Pakrasi HB (2000) The BtpA protein stabilizes the reaction center proteins of photosystem I in the cyanobacterium Synechocystis sp. PCC 6803 at low temperature. Plant Physiol 123: 215-222.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top