跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 10:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂政璋
研究生(外文):Cheng-Chang Lu
論文名稱:三倍體香蕉cv.Raja胚性細胞極化與非極化生長之調控與質量化體胚生產
論文名稱(外文):The regulation of polar and apolar growth in pre-embryogenic cells and qualitatively mass production of somatic embryos of triploid banana Musa AAB cv. Raja.
指導教授:許圳塗許圳塗引用關係
指導教授(外文):Chou Tou Shii
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:149
中文關鍵詞:極化生長非極化生長不對稱細胞分裂細胞生長型變換高效率體胚發生個別正常化同步質量化自動pH控置系統
外文關鍵詞:polar growthapolar growthunequal cell divisioncell growth types changeshigh efficient somatic embryogenesisindividualization and normalizationsynchronization and mass productionauto pH control system
相關次數:
  • 被引用被引用:14
  • 點閱點閱:419
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
第一章 香蕉cv. Raja胚性細胞極化與非極化生長之調控
香蕉cv. Raja胚性細胞長期培養,胞外pH位階會因生長型的不同而有所差異,但大多自調於4.0-4.6範圍,並以增生相生長為主。本試驗參試各種直接或間接處理探討其對胞外pH值影響,及其與生長型變換之關係。預調整繼代培養之培養基pH值為3.8-5.8,殺菌後pH會提高或降低,但經培養二繼代後胞外pH則穩定維持在pH4.35-4.68之間,其仍為增生相生長型。NaH2PO4處理增生相細胞,以添加250mg/L可促使胞外pH維持為4.7-5.5,並可誘導朝向球狀體發育。繼代週期與更新比例處理培養,無法有效誘使生長型的轉換。以再生培養基(SH3)行液體培養,於二繼代內可提高胞外pH由4.1提升為6.8,之後維持在pH6.5左右,生長型則可由增生相轉變成為球體相之極性發育。
增生相生長型以外控pH3.5-4.0酸化處理,可促使前胚性細胞團酸解而釋放游離細胞,強迫誘導為增殖相之非極化生長型。pH4.8-5.3微鹼化處理,會誘導前胚性細胞團極化生長發育具原表皮之球狀體及基生之胚柄,使生長型由增生相轉變成為球體相。強酸化處理可誘導非極化生長,微酸化處理則能誘引朝向極化生長。利用pH自動控制系統調控培養之胞外pH位階,顯示其可誘導胚性細胞生長型單向轉型、雙向可逆性之生長型互換及三種生長型循環生長之變化,此一控制系統可同步調控產生均一及同質性之特定生長型。
酸化處理會誘使不同基因組之香蕉游離胚性細胞呈對稱分裂,產生兩子細胞大小平均比例為1.02±0.02,故朝向非極化生長。較高的pH條件,則能誘導極性發育,建立生理雙極性,而進行第一次不對稱細胞分裂,兩子細胞大小平均比例為1.30±0.04。會繼續分裂為T型期與多胞型期類似原胚期之發育,頂細胞衍生體發育至球狀期胚。
前胚性細胞團酸解產生游離細胞,胞壁上有明顯callose的沉積,螢光反應較強。較高的pH條件下,第一次不對分裂後,較大的細胞會有較強的螢光表現,而發育成為原表皮之球狀體僅在基端,才有螢光之反應。
第二章 高效率質量化生產香蕉體胚
香蕉Musa AAB cv. Raja胚性細胞系培養過程,細胞族群均為不定形之前胚性細胞團,為混合的非極化異質生長,歸之為增生相(proliferation phase),增生相之細胞團平板培養於SH3再生培養基,可誘導聚生多數體胚發生,顯示其具高胚性潛力,但體胚形成與發育呈現不一致、不同步成熟生長。利用人為調控培養期間之胞外pH位階於pH3.5-4.0,可誘引增生相導向為增殖相(multiplication phase),促使不定形細胞團酸解,而釋放出胞質稠之單細胞,並呈均質游離胚性細胞族群。再將之調控胞外pH為4.8-5.3之極化條件,可誘導增殖相之游離單細胞,同步、均質導向前胚發生,並發育成為整齊具胚柄之球狀體。爾後估算平板培養於再生培養基,平均每1/30ml CPV可產生33,429±784個體胚,即1ml CPV可估算產生達106個體胚,而成熟體胚整齊度可達89%。體胚接種於含NAA 0.1mg/L之MS培養基,胚苗轉換率可達95%以上,能於30天內發芽產生體胚苗。此方式可誘導體胚發生同步化、個別化、正常化、高胚苗轉化與再生小植株,是為高效率同步質量化生產體胚之模式。
增生相或誘導之增殖相,皆可藉調控pH導向極化生長,發育成為具胚柄之球狀體,是為不歸點(point of no return)生長,但可接續更換以於液體生胚培養基,促使球胚分化形態雙極與成熟生長。誘導胚性定向細胞在液體懸浮培養進行體胚發生之模式,可在本研究中論證,唯其形態正常化及胚苗轉化率尚待改進之。
Chapter I The regulation of plar and apolar grwoth in pre-embryogenic cells of triploid banana Musa AAB cv. Raja.
The extacellular pH in the embryogenic cells suspension of banana Musa AAB cv. Raja auto-regulated in the narrow range 4.0-4.6, and dominated in proliferation growth phase during longterm maintenance culture refreshed with TB5 medium in each 14 days interval. It was showed that the adjusted medium pH at 3.8-5.8. There were changed to 4.15-4.71 after autoclave, and autoregulated to 4.35-4.68 in the second subcutlure generation. In the meantime, all the cell population of different pH treatment remained the same proliferation growth phase active in apolar growth. The change of subculture duration or refresh medium ratio was also without effect on extracellular pH and growth phase. The addition of NaH2PO4 250mg/L was efficiently to buffer the external solution pH at 4.7-5.5, concomitantly induced the pre-embryogenic cells destining to polar growth and forming clustered globules.
It was demonstrated that the growth phase change could be simulated through controlling pH level. Both growth types of proliferation and globularization phase were efficiently directed into multiplication phase via acidic pH3.5-4.0 treatment. Under the acidic condition, the pre-embryogenic cells masses of proliferation phase were activated in releasing homogenous free cells with high embryogenic competenc within 2-3 weeks. In contrast, the globules of globularization phase reproduced less proportion of pre-embryogenic cells and required longer time 5-7 weeks for complete disorganization.
In response to controlling pH4.8-5.3, both aploar growth types of multiplication and proliferation phases were rapidly directed to polar growth of globularization phase, and respectively formed of solid globules and clustered globules.
These results supported the the acid growth model that the acidic condition may interfer the establishment of polar axis in the pre-embryogenic determined cells, and conducted to apolar growth in formation of amophically pre-embryogenic cell masses. The acidic treatment cells were dominated in symmetric cell division, the size ratio between two daughter cells was examined as 1.02±0.02. The lightly acidic condition pH4.8-5.3 may serve as signal for induction of polar axis and resulted in unequal division, the size ratio of two daughter cells was 1.30±0.04 among the cell lines different genomic groups. Therafter, the development fate of apical and basal cells was defined in this research.
Chapter II High efficient synchronization and mass production somatic embryos of triploid banana Musa AAB cv. Raja.
The cell lines in embryogenic suspension culture of banana Musa AAB cv. Raja was dominant in apolar proliferation consisted of pre-embryogenic cell masses (PEMs) and heterogeneous cell population, which displayed highly embryogenic competency assessed on regeneration medium capable to form somatic embryos 9254±1554 with 1/30 ml CPV. But the induced somatic embryos were unsynchronized in growth, and limited in embryo-plantlet conversion rate.
Giving control extracellular pH3.5-4.0 level, the PEMs of proliferation phase were forced to multiplication phase active in releasing pre-embryogenic cells that only reproduced 821 embryoids with 1/30 ml CPV. Subsequently, the pre-embryogenic free cells were treated with controlling pH4.8-5.3 level which were directed to polar growth, and formed uniform globules. It was demonstrated that the 1/30 ml CPV was capable to form 33,429±784 somatic embryos and 89% uniformity on SH3 regeneration medium, it was estimated as high as 106 somatic embryos per ml CPV.
The somatic embryo-plantlet conversion rate was achieved over 90% on MS medium supplemental with NAA 0.1 mg/L medium culture and the trans plant able plantlets were established in less than 30 days. This method could induce synchronization, individualization, normalization of somatic embryogensis, and high plantlet conversion rate. It is benefit for production of massive and qualitative somatic embryos.
The pre-embryogenic cells of multiplication and proliferation phases could be directed to polar growth, and develop to globular body with basal suspensor. Subsequently, exposing the globules in liquid SH3 regeneration which were capable to differentiate morphological bipolarity and become mature somatic embryos. The evidence indicated that the controlling pH directed to polar growth and globularization, and the development of somatic embryogenesis, all the sequences could be conducted under alternative liquid medium condition. The quantities production of somatic embryos in bioreactor would become feasible, but the technique of quality improvement is still required to be studied.
內容目次
第一章、香蕉cv. Raja胚性細胞極化與非極化生長之調控1
一、前言1
二、前人研究2
(一)結合子細胞極化生長模式2
1.生理雙極性(physiological bipolarity)2
2.形態雙極性(morphological bipolarity)4
(二)細胞極化與pH變化之關係5
(三)胚性細胞自調酸化生長模式6
1.胚性細胞生長發育模式6
2.自調酸化生長模式7
三、材料與方法9
(一)試驗材料9
(二)試驗方法9
1.培養基pH之調整9
2.不同pH控制位階處理增殖相、增生相及球體相等三種生長型9
3.pH位階交替變化處理11
4.pH3.5-4.0、4.2-4.7、4.8-5.3處理分析與螢光檢查12
5.NaH2PO4處理12
6.TB5與SH3培養基比較試驗12
7.繼代週期及更新比例試驗13
(三)胚性細胞極化與非極化生長之觀察檢定與調查方法13
1.胞外pH值測定13
2.細胞生長量(cell packing volume)之測定螢光染色觀察13
3.倒立顯微鏡觀察14
4.不對稱分裂胚性細胞的計算14
5.螢光染色觀察14
6.培養基成分14
四、結果15
(一)培養基不同pH處理對香蕉懸浮胚性細胞生長之影響15
1.香蕉懸浮胚性細胞之生長發育相15
2.不同pH值培養基處理效應16
(二)持續調控胞外pH位階對香蕉胚性細胞生長之影響16
1.增生相生長型以pH3.5-4.0及4.8-5.3調控之情形17
2.增殖相生長型以pH3.5-4.0及pH4.8-5.3調控之生長情形18
3.球體相生長型以pH3.5-4.0及pH4.8-5.3調控之生長情形19
(三)二種胚性細胞生長型互換之調控生長情形20
1.增生與增殖相生長型互換之調控處理20
2.增生相與球體相生長型互換之調控處理21
3.球體相與增殖相生長型互換之調控處理21
(四)增殖相、增生相及球體相三種生長型態調控處理互換模式22
1.同生長型起始持續酸化與鹼化處理對生細胞生長型之影響22
2.增殖相、增生相及球體相生長型互換變化情形24
3.增生相、增殖相及球體相生長型之互換變化情形24
4.增生相、球體相及增殖相生長型之互換變化情形24
5.球體相、增生相及增殖相生長型之互換變化情形25
(五)非極化與極化生長細胞學檢定與胚性細胞早期發育情形25
1.pH3.5-4.0、4.2-4.7及4.8-5.3位階監控處理對游離胚性細胞早期生長之影響25
2.極性建立之細胞程序性發育26
3.Callose活性表現與極化生長之關係27
(六)NaH2PO4處理對胞外pH與細胞生長型之影響27
1.胞外之pH變化27
2.胚性細胞生長發育型態28
(七)再生培養基液體培養對胞外pH與細胞生長型之影響29
1.培養期間胞外pH變動與生長發育相之變化29
2.更新維持培養基(TB5)與再生培養基(SH3)液體培養對暫時性組織之胚柄形成影響30
(八)繼代週期與更新比例對胞外pH變化與細胞生長之影響30
1.繼代時間變化處理30
2.不同更新比例處理效應31
五、討論32
(一)胚性細胞生長發育模式32
(二)非極化生長之酸解模式33
(三)極化生長模式之調控34
1.間接之調控胞外pH模式34
2.直接調控胞外pH位階36
(四)極化、非極化生長型互換模式37
(五)極性建立與早期體胚發生之模式37
1.胚性細胞極性建立37
2.不對稱細胞分裂38
3.早期體胚發生39
六、中文摘要79
七、英文摘要(Summary)80
八、參考文獻82
第二章、高效率同步質量化生產香蕉體胚89
一、前言89
二、前人研究90
1.體胚發生90
(1)直接體胚發生91
(2)間接體胚發生91
(3)中間型體胚發生91
(4)重複體胚發生91
2.高效率體胚發生及胚苗轉化92
三、材料與方法94
(一)試驗材料94
(二)試驗方法94
1.預處理對體胚發生之影響94
2.半固態及液態方式誘導體胚發生96
3.不同來源體胚之胚苗轉化之比較96
(三)胚性檢定與調查方法97
1.胞外特定pH位階之控制97
2.胚性檢定97
3.體胚之計數98
4.胚苗轉化之培養基98
四、結果99
(一)以胞外pH3.5-4.0、pH4.8-5.3預處理對體胚發生之影響99
1.增生相生長型預處理生長相變化99
2.增生相細胞預處理對體胚發生之影響100
3.增殖相與球體相生長型預處理生長相變化情形101
4. 增殖相與球體相生長型預處理對體胚發生之影響102
(二)NaH2PO4預處理效應104
1.增生相生長型以不同濃度之NaH2PO4對其體胚發生之影響104
2.增生相生長型以NaH2PO4 250mg/L預處理不同天數對體胚發生之影響104
(三)體胚發生之誘導模式105
1.固定平板培養之誘導105
2.懸浮液體培養之誘導105
(四)胚苗轉化與小植株再生106
1.ABA處理對胚苗轉化之影響106
2.GH1、1/2N.1、1/2N.1B.1培養基對胚苗轉換與小植株再生之影響107
3.液體培養誘導植株再生模式108
五、討論109
(一)懸浮細胞生長型與體胚發生之關係109
(二)極化與非極化生長對平板效率之影響110
(三)高效率體胚發生(High-efficiency somatic embryogenesis)112
(四)體胚發生之個別化與正常化(Individualization and nromalization of somatic embryogenesis)114
(五)同步質量化體胚(Synchronization and mass production somatic embryos)116
(六)高胚苗轉化與植株再生(High conversion rate and plantlets regeneration)118
1.ABA處理效應118
2.GH1、1/2N.1、1/2N.1B.1不同培養基處理胚苗轉換與植株再生情形119
3.液體懸浮發芽誘導再生120
六、中文摘要143
七、英文摘要(summary)144
八、參考文獻146
圖目次
圖1. 三倍體香蕉懸浮細胞培養其主要三種生長型及發育相類別41
圖2. 不同pH更新培養基對香蕉cv. Raja增生相細胞生長之影響44
圖3. 不同pH更新培養基對香蕉cv. Raja胚性細胞在兩繼代之沉降體積生長量之影響46
圖4. 香蕉cv. Raja增生型細胞在不同監控pH位階下之生長發育相變化47
圖5. 香蕉cv. Raja 增生相細胞在不同監控pH條件生長之Aniline blue 染色反應49
圖6. 香蕉cv. Raja之增殖相(A)、增生相(B)及球體相(C)在監控pH位階下持續四繼代之生長相變化情形51
圖7. 監控pH位階對香蕉cv. Raja 之增殖相(A)、增生相(B)及球體相(C)細胞生長及Callose 形成之影響53
圖8. 酸化處理(pH3.5-4.0)對香蕉cv. Raja三種生長型共通增殖相轉型效應55
圖9. 鹼化處理(pH4.8-5.3)香蕉cv. Raja之增殖相、增生相及球體相細胞導向同一球體相之生長情形56
圖10. 香蕉cv. Raja之增殖相、增生相及球體相細胞以pH4.8-5.3及pH3.5-4.0變化處理對生長發育變化之情形57
圖11. 香蕉cv. Raja之增殖相、增生相及球體相細胞以pH3.5-4.0及pH4.8-5.3變化處理導向同一生長之情形58
圖12. 香蕉cv. Raja之增殖相、增生相及球體相細胞控制胞外pH處理生長型發育變化之情形59
圖13. 香蕉cv. Raja以pH3.5-4.0、pH4.2-4.7及pH4.8-5.3三種pH位階預誘引之增殖相前胚性細胞其早期生長發育之影響61
圖14. 香蕉cv. Raja之前胚性細胞在酸控(pH3.5-4.0)條件誘導對稱分裂雙胞分佈頻率63
圖15. 香蕉cv. Raja懸浮游離細胞在三種pH (pH3.5-4.0、4.2-4.7、4.8-5.3)條件雙胞對稱與不對稱分裂之頻率64
圖16. 香蕉cv. Raja 胚性細胞早期體胚發生之過程67
圖17. Callose 活性表現與胚性細胞極化生長之關係68
圖18. 香蕉cv. Raja胚性細胞以不同NaH2PO4濃度處理對胞外pH變動之影響69
圖19. 香蕉cv. Raja胚性細胞以NaH2PO4 0、250mg/L處理對胞外pH變動之影響70
圖20. 香蕉cv. Raja增生相胚性細胞以不同NaH2PO4濃度處理對細胞生長發育之影響71
圖21. 香蕉 cv. Raja增生相胚性細胞以維持培養基(TB5)、再生培養基(SH3)控制pH4.8-5.3與再生培養基培養不同天數對胞外pH變動之影響73
圖22. 香蕉 cv. Raja增生相胚性細胞以維持培養基(TB5)、再生培養基控制pH4.8-5.3及再生培養基(SH3)培養不同天數生長發育相變化之情形74
圖23. 香蕉cv. Raja之增生相與球體相胚性細胞每四天繼代對胞外pH之影響76
圖24. 香蕉cv. 北蕉之胚性細胞不同繼代比例對繼代前與新、舊培養基混合後胞外pH變化之影響77
圖25. 香蕉cv. 三尺蕉之胚性細胞不同繼代比例對繼代前與新、舊培養基混合後胞外pH變化之影響78
圖26. 香蕉cv. Raja之增生相生長型以酸化(pH3.5-4.0)與鹼化(pH4.8-5.3)位階預處理體胚發生之情形(1.6x)122
圖27. 香蕉cv. Raja之增殖相、增生相及球體相生長型以酸化(pH3.5-4.0)與鹼化(pH4.8-5.3)預處理不同天數對體胚發生之影響(2.0x)125
圖.28. 香蕉cv. Raja增生相生長型以NaH2PO4不同濃度預處理14天對細胞極化生長發育及體胚發生之影響128
圖29. 香蕉cv. Raja三種生長型以平板培養與液體培養誘導體胚發生之情形(2.5X)132
圖30. 香蕉cv. Raja胚性細胞經平板培養與液體培養誘導體胚以ABA不同濃度處理60天胚苗轉換之情形134
圖31. 香蕉cv. Raja胚性細胞經平板培養與液體培養誘導體胚以GH1、1/2N.1、1/2N.1B.1不同培養基培養30天胚苗轉換之情形139
圖32. 香蕉cv. Raja胚性細胞經平板培養與液體培養誘導體胚以1/2N.1培養基液體培養之情形141
表目次
表1. 香蕉cv. Raja之增生型胚性細胞懸浮培養培養基pH調整及兩繼代培養過程胞外pH變動情形43
表2. 香蕉AAA及AAB 細胞系在低pH (<4.5)條件下游離單細胞形態及雙胞期之大小比率變化65
表3. 香蕉AAA及AAB細胞系在高pH (>pH4.6)培養條件其單胞形態及雙胞大小比例變化66
表4. 香蕉cv. Raja增生相胚性細胞以胞外pH3.5-4.0、pH4.8-5.3條件預處理不同天數對體胚發生數量之影響124
表5. 香蕉cv. Raja增殖相、增生相、球體相胚性細胞以胞外pH4.8-5.3、pH3.5-4.0條件預處理不同天數對體胚發生數量之影響127
表6. 香蕉cv. Raja增生相胚性細胞以NaH2PO4不同濃度預處理對體胚發生數量之影響130
表7. 香蕉cv. Raja增生相胚性細胞以NaH2PO4 250mg/L預處理不同天數對體胚發生數量之影響131
表8. 香蕉cv. Raja胚性細胞經平板與懸浮培養方式誘導之體胚以ABA不同濃度處理30天對體胚發芽之影響136
表9. 香蕉cv. Raja胚性細胞經平板與懸浮培養方式誘導之體胚以ABA不同濃度處理60天對體胚發芽之影響137
表10. 香蕉cv. Raja胚性細胞經平板與懸浮培養方式誘導之體胚以不同培養基處理對胚苗轉換之影響138
第一章 香蕉cv. Raja胚性細胞極化與非極化生長之調控
馬溯軒、許圳塗. 1988. 植物再生與繁殖及改良. 園藝作物組織培養之應用研討會專集. p.1-18.
許圳塗、鍾仁彬. 1998. 香蕉胚性細胞懸浮培養自調酸化與生長發育相變化關係. 行政院國科會專題研究計劃成果報告.
黃怡菁. 1994. 香蕉細胞懸浮培養及原生質體培養體胚誘導研究. 國立台灣大學園藝學研究所博士論文.
劉信良. 2000. 流蘇細胞懸浮培養生長發育及其pH變化之特性. 國立台灣大學園藝學研究所碩士論文.
鍾仁彬、呂政璋、許圳塗. 2000. 香蕉胚性細胞自調酸化生長模式及極化與非極化生長之調控. 中國園藝 46(4):505(摘要).
鍾仁彬、許圳塗. 1999. 香蕉胚性細胞培養非極化增生酸化生長模式. 中國園藝 45(4):471(摘要).
Belanger, K. D. and R. Quatrano. 2000. Polarity: The role of localized secretion. Curr. Opin. Cell Biol. 3:67-62.
Berger, F., and C. Brownlee. 1993. Establishment of the apical-basal axis in multicellular plant embryos. Biol.Cell 84:7-11.
Berger, F., and C. Brownlee. 1993. Ratio confocal imaging of free cytoplasmic calcium gradients in polarizing and polarized Fucus zygotes. Zygote 1:9-15.
Brownlee, C. 1989. Visualizing cytoplasmic calcium in polarizing zygotes and growing rhizoids of Fucus serratus. Biol. Bull. 176(Suppl):14-17.
Brwonlee, G. and F. Y. Bouget. 1998. Polarity determination in Fucus: From zygote to multicellular embryo. Semin. Cell Dev. Biol. 9:179-185.
Congard, B., G. Beaujard, and J. D. Viemont. 1986. Culture of Calluna Vulgaris in nitrate or ammonium salts media and pH Kinetics in relation to plant development. Can. J. Bot. 64:959-964.
Drubin, D. G. and W. J. Nelson. 1996. Origins of cell polarity. Cell 84:335-344.
Drubin, D. G.(eds). 2000. Cell polarity in algae and vascular plants. Cell polarity. p.141-173.
Escalant, J. V., C. Teisson and F.Cote. 1994. Amplified somatic embryogenesis from male flowers of triploid banana and plantain cultivars(Musa spp.). In Vitro Cell Dev. Biol.30:181-186.
Finer, J. J. 1994. Plant regeneration via embryogenic suspension culture. In: Plant Cell Culture. Dixon and Gonzales (eds). IRL Press. Oxford. pp. 99-125.
Fowler, J. E., and Quatrano, R. S. 1995. Cell polarity, asymmetric division, and cell fate determination in brown algal zygotes. In Seminars in Developmental Biology: Simple Systems for the Analysis of Important Developmental Problems, D. Kirk, ed. pp.347-358.
Gallagher, K. and L. G. Smith. 1997. Asymmetric cell division and cell fate in plants. Curr. Opin. Cell Biol. 9:842-848.
Gibbon, B. C. and D. L. Kropf. 1991. pH gradient and cell polarity in Pelvetia embryos. Protoplasma. 163:43-50.
Gibbon, B. C. and D. L. Kropf. 1993. Intracellular pH and its regulation in Pelvetia zygotes. Dev. Biol. 157:259-268.
Goodner B., and R. S. Quatrano. 1993. Fucus embryogenesis: a model to study the establishment of polarity. Plant cell 5:1471-1481.
Guern. J., H. Felle., Y. Mathieu., and A. Kurkdjian. 1991. Regulation of intracellular pH in plant cells. Int. Rev. Cytol. 127:111-173.
Harold, F. M. 1990. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol. Rev. 54:381-431.
Henry, C., J. R. Jordan, and D. L. Kropf. 1996. Localized membrane-wall adhesions in Pelvetia zygotes. Protoplasma 190:39-52.
Hepler, P. K., A. L. Cleary, B. E. S. Gunning, P. Wadsworth, G. O. Wasteneys, and D. H. Zhang. 1993. Cytoskeletal dynamics in living plant cells. Cell Biol. Int. 17:127-142.
Huang, I. C., C. T. Shii, and S. S. Ma. 1999. Cycling growth characters in embryogenic cell suspension culture of banana AAA cavendish subgroup and AAB cultivars. J. Chinese Soc. Hort. Sci. 45:130-143.
Hurst, S. R., and D. L. Kropf. 1991. Ionic requirements for establishment of an embryonic axis in Pelvetia zygotes. Planta 185:27-33.
Jaffe, L. F. 1969. On the centripetal course of development, the Fucus egg, and self-electrophoresis. Dev. Biol. Suppl. 3:83-111.
Jürgens, G., M. Grebe, and T. Steinmann. 1997. Establishment of cell polarity during early plant development. Curr. Opin. Cell Biol. 9:849-852.
Kenneth, D. B., and R. S. Quatrano. 2000. Polarity:the role of localized secretion. Curr. Opin. Plant Biol. 3:67-72.
Kropf, D. L. 1992. Establishment and expression of cellular polarity in fucoid zygotes. Microbiol. Rev. 56:316-339.
Kropf, D. L. 1994. Cytoskeletal control of cell polarity in a plant zygote. Dev. Biol. 165:361-371.
Kropf, D. L. 1997. Induction of polarity in Fucoid zygotes. Plant Cell. 9:1011-1120.
Kropf, D. L., C. A. Henery, and B. C. Gibbon. 1995. Measurement and manipulation of cytosolic pH in polarizing zygotes. Eur. J. Cell Biol. 68:297-305.
Kropf, D. L., S. K. Bearge, and R. S. Quatrano. 1989. Actin localization during Fucus embryogenesis. Plant cell 1:191-200.
Kropf, D. L., S. R. Bisgrove, and W. E. Hable. 1999. Establishing a growth axis in fucoid algae. Trends in Plant Science. 4(12):490-494.
Laux, T., and G.Jurgens. 1997. Embryogenesis: a new start in life. Plant Cell 9:989-1000.
Luo, Y., and H. U. Koop. 1997. Somatic ebmryogenesis in cultured immature zygotic embryos and leaf protoplasts of Arabidopsis thaliana ecotypes. Planta. 202:387-396.
Ma, S. S., C. T. Shii and S. O. Wang. 1978. Regeneration of banana plants from shoot meristem tips and inflorescence section in vitro. Abstravt no.1639. XXth. Intl. Cong. Hort. Sydney. Australia.
Motomura, T. 1994. Electron and immunofluorescence microscopy of the fertilization of Fucus distichus. Protoplasma 178:97-110.
Novak, E. J. 1992. Musa (bananas and plantains).In:Biotechnology of perennial fruit crops. Univ. Press, Cambridge. pp. 449-453.
Nuccitelli, R.1978. Ooplasmic segregation and secretion in the Pelvetia egg is accompanied by a membrane-generated electrical current. Dev. Biol. 62:13-33.
Quatrano, R. S. 1978. Development of cell polarity. Annu. Rev. Plant Physiol. 29:487-506.
Quatrano, R. S. 1990. Polar axis fixation and cytoplasmic localization in Fucus. In genetics of patterm formation and growth control. pp.31-46.
Quatrano, R. S., and S. L. Shaw. 1997. Role of the cell wall in the determination of cell polarity and the plane of cell division in Fucus embryos. Trends Plant Sci. 2:15-21.
Quatrano, R. S., L. Brian, J. Aldridge, and T. Schultz, 1991. Polar axis fixation in Fucus zygotes: Components of the cytoskeleton and extracellular matrix. Development 1:11-16.
Roberts, S. K., F. Berger, and C. Brownlee. 1993. The role of Ca2+ in signal transduction following fertilization in Fucus serratus. J. Exp. Biol. 184:197-212.
Roberts, S. K., I. Gillot, and C. Brownlee. 1994. Cytoplasmic calcium and Fucus egg activation. Development 120:155-163.
Robinson, K. R. 1996a. Fucoid zygotes germinate from their darkest regions, not their brightest ones. Plant Physiol. 112:1401.
Robinson, K. R. 1996b. Calcium and the photopolarization on Pelvetia zygotes. Planta 198:378-384.
Robinson, K. R., and C. D. Mccaig. 1980. Electrical fields, calcium gradients, and cell growth. Ann. N. Y. Acad. Sci. 339:132-138.
Robinson, K. R., and L. F. Jaffe. 1975. Polarizing fucoid eggs drive a calcium current through themselves. Science 187:70-72.
Scherp, P., R. Grotha and U. Kutschera. 2001. Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant cell Rep. 20:143-149.
Shang, X. M., J. Y. Huang. C. H. Haigler, and N. L. Trolinder. 1991. Buffer capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspension. Dev. Biol. 27:147-152.
Shaw, S. L., and R. S. Quatrano. 1996. The role of targeted secretion in the establishment of cell polarity and the orientation of the division plane in Fucus zygotes. Development 122:2623-2630.
Shigeta, J. I., K. Sato, and M. Mii. 1996. Effect of initial cell density, pH and dissolved oxygen on bioreactor production of carrot somatic embryo. Plant Science. 115:109-114.
Smith, D. L. and A. D. Krikorian. 1990. Low external pH replaces 2,4-D in maintaining and multiplying 2,4-D-initiated embryogenic cell of carrot. Physiol. Plant. 80:329-336.
Taylor, A., N. Manison, and C. Fernandez, J. Wood, and C. Brownlee. 1996. Spatial organization of calcium signaling involved in cell volume control in the Fucus rhizoid. Plant Cell 8:2015-2031.
Torello, W. A., R. Rufner and A. G. Symington. 1985. The ontogeny of embryos from long-term callus cultures of red fescue. HortSci. 20:938-942.
Trewavas, A. J., and R. Malho. 1997. Signal perception and transduction: the origin of the phenotype. Plant Cell 9:1181-1195.
Tsay, H. S., and H. L. Huang. 1998. Somatic embryo formation and germination from immature embryo-derived suspension-cultured cells of Angelica sinensis (Oliv.) Diels. Plant cell reports. 17:670-674.
Vreeland, V., and L. Epstein. 1996. Analysis of plant-substratum adhesives. In plant cell wall analysis: modern methods of plant analysis, vol. 17, H.F. Linskins and J. F. Jackson, eds. pp. 95-116.
Williams, E. G. and G. Maheswaran. 1986. Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann. Bot. 57:443-462.
Yasada, H., M. Nakajima, H. Masuda, and T. Ohwada. 2000. Direct formation of heart-shaped embryo from differentiated single carrot cells in culture. Plant Sci. 152:1-6.
Zimmerman, J. L. 1993. Somatic embryogenesis: a model for early development in higher plants. Plant cell 5:1411-1423.
第二章 高效率質量化生產香蕉體胚
李阿嬌. 1992. 流蘇體外培養之體胚發生及植株之再生. 國立台灣大學園藝學研究所碩士論文.
馬溯軒、許圳塗. 1988. 植物再生與繁殖及改良. 園藝作物組織培養之應用研討會專集. p.1-18.
馬溯軒. 1988. 香蕉之體胚發生與植株再生. 園藝作物組織培養之應用研討會專集. p.181-187.
黃怡菁. 1994. 香蕉細胞懸浮培養及原生質體培養體誘研究. 國立台灣大學園藝學研究所博士論文.
楊晴惠. 1999. 觀賞鳳梨組織培養不定芽再生之研究. 國立台灣大學園藝學研究所碩士論文.
Barna, K.S. and A.K. Wakhlu. 1995. Direct somatic embryogenesis and plantlet regeneration from immature leaflets in chickpea. In Vitro Cell Dev. Biol. Plant 31:137-139.
Brummell, D. A. and J. L. Hall. 1987. Rapid cellular responses to auxin and the regulation of growth. Plant Cell Environ. 10:523-543.
Buchheim, J., S. M. Colburm, J. P. Ranch. 1989. Maturation of soybean somatic embryos and the transition to plantlet growth. Plant Physiol. 89:768-775.
Castillo, B. and M. A. L. Smith. 1997. Direct somatic embyrogenesis from Begoia gracilis explants. Plant Cell Rep. 16:385-388.
Chengalrayan, K., V. B. Mhaske, and S. Hazra. 1997. High-frequency conversion of abnormal peanut somatic embryos. Plant Cell Rep. 16:783-786.
Choi, Y. E., D. C. Yang, E. S. Yoon, and K. T. Choi. 1999. High-efficientcy plant production via direct somatic embryogenesis from preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryo. Plant Cell Rep. 17:493-499.
Dodeman, V. L., G. Ducreux and M. Kreis. 1997. Zygotic embryogenesis versus somatic embryogenesis. J. of Exper. Bot. 313:1493-1509.
Escalant, J. V. and C. Teisson. 1989. Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Rep. 7:665-668.
Escalant, J.V. and C. Teisson. 1989. Somatic embryogenesis and plants from immature zygotic embryos of the species Musa acuminata and Musa balbisiana. Plant Cell Rep.7:665-668.
Escalant, J.V., C. Teisson, and F. Cote. 1994. Amplified somatic embryogenesis from male flower of triploid banana and plantain cultivars (Musa spp.). In Virto Cell Dev. Biol. 30:181-186.
Fernando, S. C. and C. K. A. Gamage. 2000. Abscisic acid induced somatic embryogenesis in immature embryo explants of coconut (Cocos nucifera L.). Plant Sci. 151:193-198.
Fujimura, T. and A. Komamine. 1979. Synchronization of somatic embryogenesis in a carrot cell suspension culture. Plant Pyhsiol. 64:162-164.
Georget, F., R. Domergue, N. Ferriere, and F. X. Cote. 2000. Morphohistological study of the different constituents of a banana (Musa AAA, cv. Grande naine) embryogenic cell suspension. Plant Cell Rep. 19:748-754.
Goodner, B. and R. S. Quatrano. 1993. Fucus embryogenesis: a model to study the establishment of polarity. Plant Cell 5:1471-1481.
Grapin, A., J. Schwendiman, and C. Teisson. 1996. Somatic embryogenesis in plantain banana. In Virto Cell Dev. Biol. 32:66-71.
Janick, J. 1993. Agricultural uses of somatic embryos. Acta Hort. 336:207-215.
Kamada, H. and H. Harada. Changed in nitrate reductase activity during somatic embyogenesis in carrot. Biochem. Physiol. Pflanen. 179:403-410.
Klimaszewska K. and D. R. Smith. 1997. Maturation of somatic embryos of Pinus strobes is promoted by a high concentration of gellan gum. Physiol. Plant 100:949-957.
Litz, R. E. and D. J. Gray. 1995. Somatic embryogenesis for agricultural improvement. World J. Microbio. Biot. 11:416-425.
Mathews, H., C. Schopke, R. Carcamo, P. Chavarriaga, C. Fauquet, and R. N. Beachy. 1993. Improvement of somatic embryogenesis and plant recovery in cassava. Plant Cell Rep. 12:328-333.
Nomura K. and A. Komamine. 1985. Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79:988-991.
Novak F. J., R. Afza, M. Van Duren, M. Perea-Dallos, B. V. Conger, and Xiaolang T. 1989. Somatic embryogenesis and plant regeneration in suspension cultures of dessert (AA and AAA) and cooking(AAB) banana (Musa spp.). Biot. 7:154-159.
Okamoto, A. H. Sakurazava, and K. Arikawa. 1994. Regeneration of plantlets from celery (Apium graveolence L.) callus using a fermentor. J. Ferment Bioeng 77:208-211.
Osuga K. and A. Komamine. 1994. Synchronization of somatic embryogenesis from carrot cells at high frequency as a basis for the mass production of embryos. Plant Cell, Tissue and Organ Culture. 39:125-135.
Osuga K., H. Masuda, and A. Komamine. 1999. Synchronization of somatic embryogenesis at high frequency using carrot suspension culture: model systems and application in plant development. Methods Cell Sci. 21:129-140.
Park S. U. and P. J. Facchini.1999. High-efficiency somatic embryogenesis and plant regeneration in Califoria poppy, Eschscholzia californica Cham. Plant Cell Rep. 19:421-423.
Radionenko M. A., N. V. Kuchuk, O. A. Khvedinich, and Y. Y. Gleba. 1994. Direct somatic embryogenesis and plant regeneration from protoplast of red clover (Trifolium pratense L.). Plant Sci. 97:75-81.
Salajova T., J. Salaj, and A. Korutak. 1999. Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Sci. 145:33-40.
Samoylov V. M., D. M. Tucker, F. Thibaud-Nissen, and W. A. parrott. 1998. Aliquid-medium-based protocol for rapid regeneration from embryogenic soybean cultures. Plant Cell Rep. 18:49-54.
Stefaniak B. 1994. Somatic embryogenesis and plant regeneration of gladiolus (Gladiolus hort.). Plant Cell Rep.13:386-389.
Williams, E. G. and G. Maheswaran. 1986. Somatic embryogenesis: factors influencing coordinated behavior of cells as an embryogenic group. Ann. Bot. 57:443-462.
Yantcheva A., M. Valhova, and A. Antanassov. 1998. Direct somatic embryogenesis and plant regeneration of carnation (Dianthus caryophyllus L.). 18:148-153.
Zimmerman, J. L. 1993. Somatic embryogenesis: a model for early devlopment in higher plants. Plant Cell 5:1411-1423.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊