跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林慧靜
研究生(外文):Hwi - Ching Lin
論文名稱:草坪植物耐寒性指標與提高耐寒性之研究
論文名稱(外文):A Study on the Indices for Chilling Tolerance and Increasing Chilling Tolerance of Turfgrasses
指導教授:張育森張育森引用關係
指導教授(外文):Yu-Sen Chang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:園藝學研究所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:93
中文關鍵詞:草坪植物寒害耐寒性指標植物矮化劑
外文關鍵詞:TurfgrassesChilling injuryChilling tolerance indicesPlant growth retardant
相關次數:
  • 被引用被引用:14
  • 點閱點閱:732
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
草坪植物是台灣公園綠地常用的地被植物,目前以種植暖季草種為主,而當冬季寒流來襲,常造成草坪生理及形態上不良的影響。本研究目的為耐寒性草種之選拔、耐寒性指標之評估,並探討矮化劑之施用及冷馴化處理提高耐寒性之可行性。
在草坪植物耐寒性之研究方面,依草種於低溫(15/13℃)下與高溫(30/25℃)下之相對生長量(%)為耐寒標準,試驗一(夏季試驗)草種耐寒程度以日本芝草最高,其次為小葉百喜草、類地毯草和假儉草相近,以地毯草最低。試驗二(冬季試驗)以小葉百喜草最高,其次為日本芝草、改良型百慕達草 ‘Sahara’、假儉草,普通百慕達草和類地毯草相近,以地毯草最低。由此可知,暖季草種以日本芝草、小葉百喜草耐寒性較佳,地毯草最差。
在耐寒性指標之評估方面,試驗一(夏季試驗)植株PSII光化學效率(Fv/Fm)的變化,以假儉草降低及回復的速度較其它草種快,其次為日本芝草、類地毯草、小葉百喜草,以地毯草低溫第8天才降到最低點,且降幅最大。試驗二(冬季試驗)植株電解質滲漏率依最高點比較之,以地毯草最高;其次為類地毯草、普通百慕達草、改良型百慕達草 ‘Sahara’、日本芝草、假儉草;而以小葉百喜草電解質滲漏率最低。低溫下除假儉草在初期CMR不降反升外,其餘草種有初期下降而後期上升的趨勢。耐寒性指標方面,以低溫第6、8天所測之相對Fv/Fm (%)與相對生長速率(%)呈顯著正相關,相關係數( r )為0.69**、0.92***,其次以所測之相對電解質滲漏率(%)與相對生長速率(%)呈顯著負相關,r以0.86*** (n=21)最高,最後以所測之相對CMR(%)與相對生長速率(%)相關性略低,r以0.80*** (n=21)最高。結果顯示此三者皆為合理、可靠之耐寒性指標,其中以葉綠素螢光相關性最高,其次為電解質滲漏率,最後為CMR。
以矮化劑(Paclobutrazol, PP-333)提高地毯草耐寒性之研究方面,秋季試驗中,25ppm葉面噴灑處理株之主莖長度較低溫對照組低,而PSII光化學效率值(Fv/Fm)及CMR較低溫對照組高,而電解質滲漏率較低溫對照組低。顯示施用PP-333有抑制生長效果,而且有提高光合作用能力、降低細胞膜及葉綠素破壞程度之作用,進而提高地毯草之耐寒性。冬季試驗將濃度提高至35ppm、70ppm,分別以土壤灌注 (S)、葉面噴灑 (D)方式施用於地毯草。結果顯示,以35ppm (S)處理主莖長度最高,其次為35ppm (D)、70ppm (S)處理,以70ppm (D)處理主莖長度最低,所以高濃度、土壤灌注抑制生長效果顯著。但PP-333處理組在Fv/Fm、電解質滲漏率及CMR並無一致的變化趨勢,所以地毯草之耐寒性並無隨著濃度的增加或不同施用方式而所差異。
不同溫度處理對地毯草生育之影響方面,以30/25℃(日/夜溫)處理生長量最佳,包括主莖、葉片生長等,其次為25/20℃、20/15℃,以15/13℃生長量最低,顯示低溫會嚴重地抑制地毯草之生長發育。Fv/Fm以30/25℃最高,其次為25/20℃、20/15℃,以15/13℃最低,CMR亦有類似的趨勢。電解質滲漏率則以30/25℃最低,其次為25/20℃、20/15℃,以15/13℃最高。
移溫處理對地毯草生育之影響方面,Fv/Fm的變化上,以逐次每週降溫處理最高且無明顯下降情形,其次為高溫(3週)、高溫(2週)移至低溫3天降到低點後即快速地回昇,高溫(1週)移溫後Fv/Fm緩慢降低,回昇速度亦慢。電解質滲漏率亦以逐次每週降溫處理增加的比率最低,其次為高溫(3週)、高溫(2週),以高溫(1週)增加的比率最高。CMR以逐次每週降溫和高溫(3週)處理較高,而高溫(2週)和高溫(1週)則有明顯下降的趨勢,但以高溫(2週)處理回昇較高溫(1週)快。在移至低溫時之植株大小方面,以高溫(3週)最高,包括主莖長度、葉片等,其次為高溫(2週)、逐次每週降溫處理,以高溫(1週)最低。所以冷馴化可提高地毯草光合作用能力,減少細胞膜、葉綠素破壞程度的效果,而且高溫處理愈久,其植株生長愈繁盛,對低溫耐性愈佳。
Summary
Warm-turfgrasses is the main grasses for groundcovers of the parks in Taiwan. Low temperatures in winter always have harmful effects on physiological and morphological growth of warm-turfgrasses. The objectives of this study were to select the warm-turfgrasses with chilling resistance, to look for the index of chilling tolerance, and to research effects of Paclobutrazol (PP-333) and cold acclimation treatments on chilling tolerance of warm-turfgrasses.
In the experiments for studying chilling tolerance of warm-turfgrasses, the relative growth rate of each grass (growth rate in low temperature (15/13℃) / growth rate in high temperature (30/25℃)) was used for comparing. In experiment 1(summer exp.), Zoysiagrass (Zoysia japonica.) had the best chilling tolerance, followed by Bahiagrass (Paspalum notatum cv. A33), Carpetgrass (Axonopus affinis), and Centipedegrass (Eremochloa ophuroides). Tropical Carpetgrass (Axonopus compressus) had the least chilling tolerance. In experiment 2(winter exp.), Bahiagrass ‘A33’ was the best chilling tolerance grass, next were Zoysiagrass, Bermudagrass ‘Sahara’, Centipedegrass, common Bermudagrass, and Carpetgrass. Tropical Carpetgrass was still the grass with least chilling tolerance. Hence, Zoysiagrass and Bahiagrass ‘A33’ were the warm-turfgrasses with better chilling tolerance, and Tropical Carpetgrass was the weakest grass under low temperatures.
To research indexes for chilling tolerance, chlorophyll fluorescence, electrolyte leakage, and chlorophyll meter reading (CMR) values were measured for evaluating. From the results of measuring chlorophyll fluorescence in experiment 1(summer exp.), the PSII photochemical efficiency (Fv/Fm) of Centipedegrass decreased and recovered faster than other tested grass species, followed by, Zoysiagrass, Carpetgrass , and Bahiagrass ’A33’. The Fv/Fm value of Tropical Carpetigrass decreased very slowly and went down to the lowest level. In the experiment 2(winter exp.), the electrolyte leakage of Tropical Carpetgrass was the highest, followed by Carpetgrass, Common bermudagrass, Improved bermudagrass, Zoysiagrass, Centipedegrass, and Bahiagrass was the lowest. Except for Centipedegrass which value increased all the time, the CMR values of warm-turfgrasses under low temperature decreased in the beginning and then increased later. There were significant positive correlations between the relative growth rate and the relative Fv/Fm ratio which measured at the 6,8 days after chilling treatment beginning, and the r were 0.69**, 0.92***(n=15). There were significant negative correlations between the relative growth rate and the relative electrolyte leakage (%) which measured after chilling treatment beginning, the r were 0.86**(n=21). There were significant positive correlations between the relative growth rate and the relative CMR values (%) which measured after chilling treatment beginning, and the r were 0.80***(n=21). The results showed that PSII photochemical efficiency, electrolyte leakage, and CMR can be reliable tool to predict the growth rate of warm-turfgrasses under low temperature.
To study the effect of PP-333 on chilling tolerance of Tropical Carpetigrass, 25 ppm PP-333 were applied to the shoots. The shoot length was shorter than control treatment. Both the PSII photochemical efficiency and the CMR value were higher than that of the control treatment, whereas the electrolyte leakage were lower than that of the control treatment. The results showed that PP-333 could inhibit the growth of Tropical Carpetigrass, increased photosynthesis efficiency, decreased the destruction of cell memberance and chlorophyll. In winter, 35 ppm or 70 ppm PP-333 were drenched to the soil or sprayed on the shoots of Tropical Carpetigrass. The results showed that the shoot length was the longest with 35 ppm by spraying, next were 35 ppm by drenching and 70 ppm by spraying. The shortest of shoot length was 70 ppm by drenching. However, the changes of Fv/Fm, electrolyte leakage and CMR value of PP-333 treatments were not identical with the PP-333 concentration or application methods.
To study the effect of temperatures on the growth and development of Tropical Carpetigrass, that results showed that the growth (include shoot length and leaf number) of Tropical Carpetigrass in 30/25℃(day/night) was the best, followed by plants grown in 25/20℃ and 20/15℃. The worst was in 15/13℃. The Fv/Fm ratio of Tropical Carpetigrass grown in 30/25℃ was the highest, and then were the plants grown in 25/20℃ and 20/15℃. The lowest value appeared on the plants grown in 15/13℃.The condition of CMR value was similar to the Fv/Fm ratio, whereas the electrolyte leakage of plants grown in 30/25℃ was the lowest , followed by the plants grown in 25/20℃, 20/15℃, and the 15/13℃was the highest.
The effects of transported temperature treatments on growth and development of Tropical Carpetigrass were that the treatment of reduced the temperature weekly had the highest level of Fv/Fm and without significantly fell down. Three-week high temperature treatment and two-week high temperature treatment were decreased to the lowest level and recovered fast at the 3rd day after chilling treatment beginning. One-week high temperature treatment fell down and recovered slowly. Electrolyte leakage was least on plants grown under the temperature reduced weekly, and then were the three-week high temperature treatment and two-week high temperature treatment. One-week high temperature treatment had the highest electrolyte leakage. The CMR values of the plants grown under the temperature reduced weekly and plants of the three-week high temperature treatment were higher. The CMR values of plants of two-week and one-week high temperature treatments decreased significantly, but the CMR values of plants of two-week high temperature treatment recovered faster than that of one-week high temperature treatment. The plant size (include shoot length and leaf number) after transported to low temperature was the highest on plants of three-week high temperature treatment. And then were that of two-week high temperature treatment and the plants under temperature reduced weekly. The growth rate of plants of one-week high temperature treatment was the lowest. The results showed that the cold acclimation can increase photosynthesis efficiency of Tropical Carpetigrass, and reduce the destruction of cell merbrance and chlorophyll.
目錄
(Content)
第一章緒論( Introducation).......................1
第二章前人研究( Literature review)...............3
(一)暖季草坪植物之耐寒性............................3
(二)低溫寒害對草坪植物之影響........................3
(三)提高作物耐寒性之方法............................12
第三章綠地草坪植物耐寒性之研究( The study of chilling tolerance on the turfgrasses )......................20
第四章耐寒性指標於草坪植物耐寒性偵測之應用 (Application of possible indices to evaluate the chilling tolerance of turfgrasses)........................................30
(一)低溫處理對草坪植物相對生長速率之影響.............35
(二)低溫處理對草種PSII 光化學效率值 (Fv/Fm)變化之影響35
(三)低溫處理對草種電解質滲率變化之影響...............35
(四)低溫處理對草種CMR變化之影響......................36
(五)評估草種相對生長速率(%)和相對Fv/Fm(%)、相對電解質
滲漏值(%)、相對CMR(%)之相關性........................36
第五章矮化劑─Paclobutrazol(PP-333)對地毯草耐寒性之影響( Effects of paclobutrazol on chilling tolerance of Tropical Carpetgrass)........................................48
(一)溫度與施用PP-333對地毯草生育之影響...............51
(二)不同方式、濃度施用PP-333對地毯草生育之影響.......51
第六章冷馴化與植株大小對地毯草耐寒性之影響( Effects of cold acclimation and plant size on chilling tolerance of Tropical Carpetgrass)..........................................65
摘要.................................................81
參考文獻( References)................................86
參考文獻( References )
王春乙、郭建平. 1999. 農作物低溫冷害綜合防禦技術研究. 氣象出版社.
朱德民. 1995. 植物與環境逆境. 明文書局. pp.87-145.
吳曉玲、邵生榮、姚愛興、鄧光存. 2000. 植物生長抑制劑在草坪上的應用研究進展. 草業科學 17(2): 34-38.
李澤民. 1991. 離層酸及多元胺在水稻幼苗耐冷性上之意義 國立台灣大學農藝學研究所博士論文.
林信輝. 1988. 水土保持草類對土壤含水量、光度及溫度之反應. 中華水土保持學報19(2):1-13.
林俊輝、謝清祥. 1998. 寒害對暖季型草坪草類生理及生長之影響. 台灣花卉園藝125:56-61.
林俊輝. 1999. 寒害對本省常用百慕達草栽培種生理與生長之影響 國立屏東科技大學熱帶農業研究所碩士論文.
林壽如. 2000. 草坪草種野花及地被種子介紹. 穗耕種苗有限公司.
邱麗慧、王玉麒、詹明才. 2000 a. 植物與溫度逆境的交感作用I、植物低溫逆境的傷害. 科學農業 48(9、10):254-258.
邱麗慧、王玉麒、詹明才. 2000 b. 植物與溫度逆境的交感作用II、植物低溫逆境的傷害. 科學農業 48(11、12):307-313.
胥曉剛、吳彥奇. 2000. 暖季型草坪草冬季枯黃原因及對策探討. 草業科學17: 43-49.
高小玲. 1994. 離層酸與高粱幼苗耐冷性之關係 國立台灣大學農藝學研究所博士論文.
張秀燕. 1995. 台灣草坪植物適應性與土壤壓實改進之研究. 國立台灣大學園藝學研究所碩士論文.
張秀燕、張育森. 1996. 台灣公園綠地草坪植物生長適應性之調查. 台大農學院研究報告. 36:151-163.
張孟瑤. 1989. 低溫馴化對綠豆幼苗生理與生化改變的影響. 國立台大灣大學植物學研究所碩士論文.
張新雄、顧元亮、賴光隆. 1974. 水稻秧苗抗寒性之研究II 抗寒機構之探討及藥劑處理效果. 中華農學會報87:37-48.
郭毓仁、李子芬. 1999. 九種適合台灣環境之草坪品種利用及管理方法之建立. 中國文化大學景觀學系自然資源與環境管理研究室.
曾夢蛟、李本湘. 1988. 植物生長調節劑與寒害. 植物生長調節劑在園藝作物之應用研討會專集. 臺灣省台中區農業改良場編印. pp.75-88.
黃敏展. 1988. 矮化劑在花卉上之應用. 植物生長調節劑在園藝作物之應用研討會專集. 臺灣省台中區農業改良場編印. pp.141-159.
黃淑貞. 1985. 生長阻礙劑與離層酸對水稻幼苗耐冷性之影響. 國立台灣大學農藝學研究所碩士論文.
楊之遠、朱鈞. 1982. 植物之冷害與抗冷性. 科學農業 30:444-457.
薛亦晴. 2000. 水稻幼苗耐冷性生理性狀之遺傳研究. 國立台灣大學農藝學系碩士論文.
鍾翊嫻. 1998. 草坪植物氮素營養和需肥診斷之研究. 國立台灣大學園藝學研究所碩士論文.
Alison, H. K., J. Harbinson, J. Williams, and C. H. Foyer. 1997. Effect of chilling on carbon assimilation, enzyme ctivation, and photosynthetic electron transport in the absence of photoinhibition in maize leaves. Plant Physiol. 114:1039-1046.
Anderson, J. A., M. P. Kenna, and C. M. Taliaferro. 1988. Cold hardiness of ‘Midiron’ and ‘Tifgreen’ bermudagrass. HortScience 23:748-750.
Andrew, P. and M. G. Mullins. 1976. Changes in anthocyanin and phenolic contain of grapevine leaf and fruit tissues with sucrose, nitrate, and abscisic acid. Plant Physiol. 58:468-472.
Andrews, J. R., M. J. Fryer, and N. R. Baker. 1995. Characterization of chilling effects on photosynthetic performance of maize crops during early season growth using chlorophyll fluorescence. J. Exp. Bot. 46:1195-1203.
Bacci, L., F. Benincasa, and B. Rapi. 1996. Effect of growth temperature on the spectrocolorimetric characteristics of sorghum pants (Sorghum bicolor (L.) Moench.): indices of stess. Eur. J. Agron. 5:45-57.
Beard, J. B. 1973. Turfgrass: Science and culture. pp.209-260. Prentice-Hall, Englewood Cliffs, New Jersey.
Belesky, D. P., H. D. Perry, W. R. Windham, E. L. Mathias, and J. M. Fedders. 1991. Productivity and quality of bermudagrass in a cool temperate environment. Agron. J. 83:810-813.
Birth, G. S. and G. R. McVey. 1968. Measuring the color of growing turf with a reflectance spectrophotometer. Agro. J. 60:640-642.
Bolhar-Nordenkampf H. R. and G. Oquist. 1993. Chlorophyll fluorescence as a tool in photosynthesis research. In:D.O. Hall et al. (Eds) Photosynthesis and production in a changing environment:a field and laboratory manua1. Chapman & Hall, London. pp. 193-206.
Bruce, D. W. and C. Y. Wang. 1987. Effect of paclobutrazol and chilling on leaf membrane lipids in cucumber seedlings. Physiol Plant. 70:404-411.
Chen, Y. Z. and B. D. Patterson. 1985. Ethylene and 1 — Aminocyclopropane — 1 - carboxylic acid as indicators of chilling sensitivity in various plant species. Plant Physiol. 12:377-385.
Chu, C. and T. M. Lee. 1989. The relationship between ethylene biosynthesis and chilling tolerance in seedlings of rice (Oryza sativa L.). Bot. Bull. Academia Sinica 30: 263-273.
Davis, T. D., G. L., Steffens, and N. Sankhla. 1988. Triazole plant growth regulators. In: Janick J(ed) Horticultural reviews, vol. 10. Timber Press, Portland, Oregon, pp. 63-105.
Duble, R. L. 1996. Turfgrasses: Their Management and Use in the Southern Zone. 2nd ed. Texas A & M Unvi. Press, Texas.
Dudeck, A. E. and C. H. Peacock. 1985. “Tifdwarf” bermudagrass growth responses to carboxin and GA3 during suboptimum temperatures. HortScience 20: 936-938.
Dwyer, L. M., M. Tollenaar, and L. Houwing. 1991. A nondestructive method to monitor leaf greenness in corn. Can. J. Plant Sci. 71:505-509.
Faria, T., D. Wilkins, R. T. Besford, and M. Vaz. 1996. Growth at elevated CO2 leads to down-regulation of photosynthesis and altered responses to high temperature in Quercus suber L. seedlings. J. Exp. Bot. 47:1755-1761.
Flagella, Z., D. Pastore, R. G. Campaile, and B. Di-Fonzo. 1995. The quantum yield of photosynthetic electron transport evaluated by chlorophyll fluorescence as and indicator of drought tolerance in durum wheat. J. Agri. Sci.125:325-329.
Fletcher, R. A. and G. Hofstra. 1990. Improvement of uniconazole-induced protection in wheat seedlings. Plant Growth Reg. 9:207-212.
Fletcher, R. A., and G. Hofstra. 1985. Triadimefon a plant multi-protectant. Plant Cell Physiol. 26:775-780.
Gatschet, M. J., C. M. Taliaferro, J. A. Anderson, D. R. Porter, and M. P. Anderson. 1994. Cold acclimation and alteration in protein synthesis in bermudagrass crowns.J. Amer. Soc. Hort. Sci. 119: 477-480.
Gesch, R. W. and J. L. Heilman. 1999. Responses of photosynthesis and phosphorylation of the light-harvesting complex of photosystem II to chilling temperature in ecologically divergent cultivars of rice. Environ. Exp. Bot. 41:257-266.
Gilbert, W. B. and D. L. Davis. 1971. Influence of fertility ratios on winter hardiness of bermudagrass. Agron. J. 63: 591-593.
Graham, D. and B. D. Patterson. 1982. Responses of plant to low, non-freezing Temperatures: Proteins, metabolism and acclimation. Ann. Rev. Plant Physiol.33: 347-372.
Guidi, L., C. Nali, S. Ciompi, G. Lorenzini, and G. F. Soldatini. 1997. The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J. Exp. Bot. 48: 173-179.
Gusta, L. V., R. W. Wilen, and P. Fu. 1996. Low temperature stress tolerance: The role of abscisic acid, sugars, and heat-stable proteins. HortScience 31:39-46.
Hruuy, V., M. Tobiaeson, S. KrÖmer, P. GardestrÖm, and G. Öquist. 1995. Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale cereale L.) following cold hardening. Plant Cell Environ. 18:69-76.
Izumi, K., S. Nakagawa, M. Kobayashi, H. Oshio, A. Sakurai, and N. Takahashi. 1988. Levels of IAA, cytokinins, ABA and ethylene in rice plants as affected by a gibberellin biosynthesis inhibitor, uniconazole-P. Plant Cell Physiol. 29:97-104.
Janda, T., G. Szalai, J. Kissimon, E. Paldi, C. Marton, and Z. Szigeti. 1994. Role of irradiance in the chilling injury of young maize plants studied by chlorophyll fluorescence induction measurements. Photosynth. 30:293-299.
Johnson, G.V. 1974. Simple procedure for quantitative analysis of turfgrass color. Agro. J. 66:457-459.
Kao, W. Y., T. T. Tsai, and W. H. Chen. 1997. The responses of photosynthetic gas exchange and chlorophyll a fluorescence to changes of irradiance and temperature in two species of Miscanthus. Photosynth. 34:497-504.
Karnok, K .J. and J. B. Beard. 1983. Effect of gibberellic acid on the CO2 exchange rates of bermudagrass and augustinegrass when exposed to chilling temperatures. Crop Sci. 23:514-516.
Lee, T. M., H. S. Lur, and C. Chu. 1993. Role of acid in chilling tolerance of rice (Oryza sativa L.). seedlings. I. Endogenous abscisic acid levels. Plant Cell and Environ. 16:481-490.
Lee, T. M., H. S. Lur, and C. Chu. 1995. Abscisic acid and putrescine accumulation in chilling-tolerant rice cultivars. Crop Sci. 35:502-508.
Leipner, J., Y. Fracheboud, and P. Stamp. 1997. Acclimation by suboptimal growth temperature diminishes photooxidative damage in maize leaves. Plant Cell Environ. 20:366-372.
Lutts, S., J. M. Kinet, and J. Bouharmont. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot. 78: 389-398.
Markhart, A. H. 1986. Chilling injury: A review of possible cause. HortScience 21: 1329-1333.
Mauro, S., P. Dainsese, R. Lannoye, and R. Bassi. 1997. Cold resistance and cold-sensitive maize lines differ in the phosphorylation of the photosystem II subunit, CP29. Plant Physiol. 115:171-180.
McWilliam, J. R. and A.W. Naylor. 1967. Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn. Plant Physiol. 42:1711-1715.
Öquist, G., V. M. Hurry, and N. P. A. Huner. 1993. Low-temperature effects on photosynthesis and correlation with freezing tolerance in spring and winter cultivars of wheat and rye. Plant Physiol. 101:245-250.
Palmertree, H. D., C. Y. Ward, and R. H. Pluenneke. 1974. Influence of mineral nutrition on cold tolerance and soluble protein fraction of centipedegrass. p.500-507. In: E. C. Roberts (ed.) Proc. 2nd Int. Turfgrass Res. Conf., Blacksburg. ASA and CSSA, Madison, WI.
Palta, J. P., B. D. Whitaker, and L. S. Weiss. 1993. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solanum species. Plant Physiol. 103:793-803.
Pinhero, R. G. and R. A. Fletcher. 1994. Paclobutrazol and ancymidol protect cron seedlings from high and low temperature stresses. Plant Growth Reg. 15:47-53.
Pinhero, R. G., M. V. Rao, G. Paliyath, D. P. Murr, and R. A. Fletcher. 1997. Changes in activities of antioxidant enzymes and their relationship to genetic and paclobutrazol-induced chilling tolerance of maize seedlings. Plant Physiol.114:695-704.
Reena, G. P. and R. A. Fletcher. 1994. Paclobutrazol and ancymidol protect corn seedlings from high and low temperature stress. Plant Growth Reg.15: 47-53.
Reeves, Jr. S. A., G. G. McBee, and M. E. Bloodworth. 1970. Effect of N, P, and K tissue levels and late fertilization on the cold hardiness of Tifgreen bermudagrass. Agron. J. 62: 659-662
Roberts, D. W. A. 1971. The effect of CCC and gibberellins A3 and A7 on the cold hardiness of Kharkov 22 MC winter wheat. Can. J. Bot. 49:705-711.
Rogers, R. A., J. H. Dunn, and C. J. Nelson. 1977. Photosynthesis and cold hardening in zoysia and bermudagrass. Crop Sci. 17:727-732.
Samala, S., W. V. Baird, and J. Yan. 1988. Changes in polar lipid fatty acid composition during cold acclimation in “Midiron” and “U3” bermudagrass. Crop Sci. 38:188-192.
Sowers, R. S. and M. S. Welterlen. 1988. Seasonal establishment of bermudagrass using plastic and straw mulches. Agron. J. 80: 144-148.
Sthapit, B. R., J. R. Witcombe, and J. M. Wilson. 1995. Methods of selection for chilling tolerance in nepalese rice by chlorophyll fluorescence analysis. Crop. Sci. 35: 90-94.
Taylor, A. O. and A. S. Craig. 1971. Plants under climatic stress: II. Low temperature, high light effects on chloroplast ultrastructure. Plant Physiol. 47:719-725.
Taylor, A. O. and J. A. Rowley. 1971. Plants under climatic stress: I. Low temperature, high light effects on photosynthetic. Plant Physiol. 47:713-718.
Taylor, A. O., N. M. Jepsen, and J. T. Christeller. 1972. Plants under climatic stress: III. Low temperature, high light effects on photosynthetic products. Plant Physiol. 49:798-802.
Toman, F. R. and H. L. Mitchell.1968. Effects of cycocel and B-nine on cold hardiness of wheat plants. J. Agric. Food. Chem.16:771-772.
Tseng, M. J. and P. H. Li. 1984. Mefluidide protection of severely chilled crop plants. Plant Physiol. 75:249-250.
Tseng, M. J., C. L. Zhang, and P. H. Li. 1986. Quantitative measurements of mefluidide protection of chilled corn plants. J. Amer. Soc. Hort. Sci. 111:409-412.
Turgeon, A. J. 1991. Turfgrass Management. Third Edition. Regents/Prentice Hall.
Verheul, M. J., P. R. Vanhassel, and P. Stamp. 1995. Comparison of maize inbred lines differing in low temperature tolerance: Effect of axxlination at suboptimal temperature on chloroplast functioning. Ann. Bot. 76:7-14.
Wang, C. Y. 1985. Modification of chilling susceptibility in seedlings of cucumber and zucchini squash by the bioregulator paclobutrazol (pp333). Sci. Hort. 26:293-298.
Wang, C.Y., and D.O. Adams. 1982. Chilling-induced ethylene production in cucumbers (Cucumis astivus L.). Plant Physiol. 69:424-427.
Watschke, T. L. and D. V. Waddington. 1975. Effect of nitrogen fertilization on the recovery of ‘Merion’ Kentucky bluegrass from scalping and wilting. Agron. J. 67: 559-563.
White, R. H. and R .E. Schmidt. 1989. Bermudagrass response to chilling temperatures as influenced by iron and benzyladenine. Crop Sci. 29:768-773.
White, R. H., and R.E. Schmidt. 1988. Carbon dioxide exchange of ‘Tifgreen’ bermudagrass exposed to chilling temperatures as influenced by iron and BA. J. Amer. Soc. Hort. Sci. 113:423-427.
Yadava, U. L. 1986. A rapid and nondestructive method to determine chlorophyll in intact leaves. HortScience 21:1449-1450.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top