跳到主要內容

臺灣博碩士論文加值系統

(44.220.62.183) 您好!臺灣時間:2024/02/27 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張偉陞
研究生(外文):Wei-Sheng Chang
論文名稱:礫石河床泥砂入滲與溶氧傳輸模式SIDO之應用與改良
論文名稱(外文):Application and Modification of Sediment Intrusion and Dissolved Oxygen Transport Model SIDO for Gravel-Bed Rivers
指導教授:吳富春
指導教授(外文):Fu-Chun Wu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:農業工程學研究所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:133
中文關鍵詞:鮭魚卵存活率孔隙流速
外文關鍵詞:salmonid embryo survivalpore velocity
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
  本研究應用美國農業部之自然資源保育局與農業研究所共同開發之泥砂入滲與溶氧傳輸模式SIDO(Sediment Intrusion and Dissolved Oxygen Transport Model)評估礫石河床之鮭魚卵存活率並進行模式之改良。SIDO模式包括河溪區域與礫石底床產卵坑區域兩部分之計算,模式利用明渠水流及輸砂方程式推算河溪區域之水面剖線、推移載輸砂率及懸浮載濃度分佈,再利用這些結果計算產卵坑區域內之孔隙流速、泥砂分佈、溶氧濃度分佈及魚卵胚胎存活率等,可用以評估集水區之泥砂沖刷對鮭鱒魚產卵區之衝擊。本研究以SIDO模式中集水區現況及復育後之水文條件做為輸入資料進行模擬,結果顯示集水區之復育措施可減少進入河溪之泥砂量,因而大幅增進魚卵存活率。本研究並以SIDO模式中產卵坑幾何參數設定做為輸入資料進行模擬,結果顯示雌性鮭鱒魚在產卵前拍打底床所製造之產卵坑幾何形狀對維持孔隙流速及魚卵存活率有極大助益。本研究亦利用SIDO模式中現有之Tappel and Bjornn經驗公式及新增Wu公式計算鮭魚存活率並針對兩種存活率預測公式進行比較,結果顯示Tappel and Bjornn公式所預測之魚卵存活率普遍較高,而Wu公式所預測之存活率則對魚卵區之孔隙流速極為敏感。本研究利用SIDO模式模擬全部泥砂貫穿入滲及僅有細砂顆粒貫穿入滲兩種情形,評估納入粗砂顆粒貫穿入滲對模擬結果之影響,結果顯示粗砂顆粒堵塞礫石河床較快速嚴重,而細砂顆粒對魚卵存活率之影響較大。本研究利用自行發展之粗砂過濾與細砂貫穿結合模式進行泥砂入滲模擬,並與SIDO全部泥砂貫穿模式之模擬結果進行比較,結果顯示過濾貫穿結合模式受過濾機制主控,在模擬過程之前期由於底床最上層之孔隙迅速被入滲之粗砂顆粒堵塞,造成孔隙流速減緩,使魚卵存活率有明顯之降低並快速達到定值;而SIDO全部泥砂貫穿模式在模擬過程之前期存活率並無太大變化,但在後期貫穿入滲之泥砂堆積量增加時,其存活率會大幅降低,顯示入滲之細砂顆粒在魚卵及胚胎孵化之後期對存活率有較大之影響。

  This study applies and modifies the SIDO model (Sediment Intrusion and Dissolved Oxygen Transport Model) to evaluate salmonid embryo survival in gravel-bed rivers. SIDO model, developed by NRCS and ARS of USDA, includes computation of stream and redd domains. The model uses open-channel flow and sediment-transport equations to determine water surface profile, bedload transport rate, and suspended load concentration. These results are used to evaluate the distributions of pore velocity, sediment deposition, DO, and embryo survival in the redd domain, and the impact of watershed soil erosion on salmonid spawning gravels. This study uses the SIDO input data of the existing and restored watershed conditions in the simulation. The results indicate that the restoration measures in the watershed reduce sediment input and thus significantly increase survival rate. This study uses the SIDO geometry parameter to carry out simulations under different redd conditions. The results indicate that the redd morphology produced by female salmonid benefits the pore velocity and embryo survival. This study also compares the Tappel and Bjornn formula and Wu formula for evaluating embryo survival. The results reveal that the survival rates predicted by Tappel and Bjornn formula are generally higher, while the survival rates predicted by Wu formula are very sensitive to pore velocity. This study uses SIDO model to simulate the penetrative intrusions of all sediment and fine sediment (silt and clay) and evaluate the effect of coarse sand on pore blockage. The results show that coarse sands block the pores faster but fine sediments are more influential to embryo survival. This study develops a modified SIDO model that combines the filtration mechanism of coarse sand and penetration mechanism of fine sediment, and compares the modified model with the SIDO penetrative intrusion model. The results indicate that the combined intrusion mechanism is governed by filtration mechanism. The pores in the surface layer are rapidly clogged by the coarse sand. Accordingly, the pore velocities are reduced and the survival rate reaches a constant value. The results of SIDO penetrative intrusion do not reveal significant changes in the early stages of simulation. However, the embryo survival rate reduces sharply when the accumulated sediment starts to block the pores, which indicates that the fine sediment may have larger effect on embryo survival in the late incubation period.

中文摘要………………………………………………………………I
英文摘要………………………………………………………………II
目錄……………………………………………………………………III
表目錄…………………………………………………………………VI
圖目錄…………………………………………………………………VII
第一章 緒論…………………………………………………………1
 1.1 前言……………………………………………………………1
 1.2 文獻回顧………………………………………………………2
 1.3 研究目的………………………………………………………4
第二章 模式理論……………………………………………………5
 2.1 SIDO模式………………………………………………………5
  2.1.1 河溪區域…………………………………………………6
   2.1.1.1 明渠水理計算………………………………………6
   2.1.1.2 渠道輸砂計算………………………………………11
  2.1.2 產卵坑區域………………………………………………17
   2.1.2.1 孔隙水流計算………………………………………17
   2.1.2.2 泥砂及溶氧傳輸計算………………………………24
   2.1.2.3 耗氧率計算…………………………………………26
  2.1.3 魚卵存活計算……………………………………………29
 2.2 過濾模式………………………………………………………30
 2.3 存活率模式……………………………………………………34
第三章 研究案例……………………………………………………36
 3.1 研究區域………………………………………………………36
 3.2 輸入資料………………………………………………………36
  3.2.1 地文資料…………………………………………………37
  3.2.2 水文資料…………………………………………………37
 3.3 研究案例………………………………………………………39
  3.3.1 案例一:集水區現況與復育後之比較…………………39
  3.3.2 案例二:產卵坑幾何特性之比較………………………39
3.3.3 案例三:不同存活率公式之比較………………………39
  3.3.4 案例四:全部泥砂貫穿與細砂貫穿之比較……………40
  3.3.5 案例五:泥砂過濾模式與貫穿模式之結合……………40
第四章 結果與討論…………………………………………………41
 4.1 現況與復育後之比較…………………………………………41
 4.2 產卵坑幾何特性之比較………………………………………46
 4.3 不同存活率公式之比較………………………………………51
 4.4 全部泥砂貫穿與細砂貫穿之比較……………………………53
 4.5 泥砂過濾模式與貫穿模式之結合……………………………56
  4.5.1 過濾模式之模擬結果……………………………………56
  4.5.2 泥砂貫穿模式與過濾模式之比較………………………58
第五章 結論與建議…………………………………………………62
 5.1 結論……………………………………………………………62
 5.2 建議……………………………………………………………63
參考文獻………………………………………………………………64
附表……………………………………………………………………68
附圖……………………………………………………………………66

[1] Alonso, C.V., and C. Mendoza. Near-Bed Sediment Concentration in Gravel-Bedded Streams. Water Resource Research, vol.28, No. 9, pp. 2459-2468, September 1992.
[2] Alonso, C.V., F.D. Theurer, and D.W. Zachmann. Tucannon River Offsite Study, Technical Report No. 5, USDA-ARS National Sedimentation Laboratory, Oxford, Mississippi, 1996.
[3] Beschta, R.L., and W.L. Jackson. The intrusion of fine sediment into a stable gravel bed. J. Fish. Res. Board Can. 36: 204-210, 1979.
[4] Brown, C.B. Sediment transportation. Chapter 12, Engineering Hydraulics, H. Rouse (editor), John Wiley and Sons, New York, NY, pp. 769-857, 1950.
[5] Burner, C.J. Characteristics of spawning nests of Columbia River Salmon. Fishery Bulletin 61, 52: 96-110, 1951
[6] Carling, P.A. Deposition of fine and coarse sand in a open-work gravel bed. Can. J. Fish. Aquat. Sci., 41:263-270, 1984.
[7] Chevalier, B., and V.G. Murphy. Intragravel dissolved oxygen model. Colorado State University , Dept. Agr. and Chem. Eng., ARS Project No. 5402-20810-004-01S, 66 pp., 1985.
[8] Chevalier, B., C. Carson, and W.J. Miller. Report of engineering and biological literature pertaining to the aquatic environment: with special emphasis on dissolved oxygen and sediment effects on salmonid habitat. Colorado State University, Dept. Agr. and Chem. Eng., ARS Project No. 5402-20813-008A, 1984.
[9] Chow, V.T., Open channel hydraulics. McGraw Hill Book Co., Inc., New York, NY, 680 pp, 1959.
[10] Coleman, N.L. Flume studies of the sediment transfer coefficient. Water Resources Research, 6(3): 801-809, 1970.
[11] Cooper, A.C. The effect of transported stream sediments on survival of sockeye and pink salmon eggs and alevins, Int. Pac. Salmon Comm., Bulletin No. 18, New Westminister, British Columbia, Canada, 1965.
[12] Einstein, H.A. Deposition of suspended particles in a gravel bed. J. Hydraul. Div., ASCE, 96 (HY2): 581-582, 1968.
[13] Engelund, F. Flow and bed topography in channel bends. J. Hydraul. Div., ASCE, 100(HY11):1631-1648, 1974.
[14] Garbrecht, J., K. Rojas, D. G. DeCoursey, and F. D. Theurer. Site specific Tucannon River computed program. Completion Report, USDA-ARS Hydro-Ecosystem Research Group, Fort Collins, CO., 1988.
[15] Griffiths, G.A. Flow resistance in coarse gravel bed rivers. J. Hydraul. Div., ASCE, 107 (HY7):899-981, 1981.
[16] Hecht, B., R. Enkeboll, C.F. Ivor, and P. Baldwin. Sediment transport, water quality, and changing bed conditions, Tucannon River, Southern Washington. Report submitted to USDA-SCS, Spokane, Washington, 1982.
[17] Henderson, F.M. Open channel flow. Macmillan, New York, NY, 522 pp., 1966.
[18] Herzig, J.P., D. M. Leclerc, and P. Le Goff, Flow of suspensions through porous media-Application to deep filtration, Ind. Eng. Chem., 62(5), 8-35, 1970
[19] Ives, K.J. Rational design of filters, Proceedings of the Institute of Civil Engineers, vol. 16, 189 pp., 1960.
[20] Iwasaki, T., Some notes on sand filtration, J. Am. Water Works Assoc., 29, 1591-1597, 1937.
[21] Johnson, R.A. Oxygen transport in salmon spawning gravels. Can. J. Fish. Aquat. Sci., 37: 155-162, 1980.
[22] Kerssens, P.J.M., L.C. van Rijn, and N. J. van Wijngaarden. Model for non-steady suspended sediment transport. Proceedings, Seventeenth Congress of the Int. Assoc. for Hydraul. Res., 1: 113-120, 1977.
[23] Lisle, T. Sedimentation of spawning areas during storm flows, Jacoby Creek, North Coastal California. Presented at the fall meeting of the American Geophysical Union, San Francisco, CA, December 8, 10 pp., 1980.
[24] McDonnel, A.J., and S.D. Hall. Effect of environmental factors on benthal oxygen uptake. Jour. WPCF, 41(8). Part 2:R353-R363, 1967.
[25] Milhous, R.T. Personal communication. U.S. Fish and Wildlife Service, National Ecology Center, Fort Collins, CO., 1988.
[26] Miller, W.J. Tucannon River percent fry emergence model. Colorado State University, Dept. Fish. and Wildlife Biology, ARS Project No. 5402-20810-004-01S, 1985.
[27] Reckendorf, F., and M.W. Van Liew. Sediment discharge from the Tucannon River. USDA Soil Conservation Service, Portland, OR, 1988a.
[28] Reckendorf, F., and M. W. Van Liew. Streambed sampling and analysis - Tucannon Watershed, Washington. USDA Soil Conservation Service, Portland, OR, 1988b.
[29] Reiser, D.W., and R.G. White. Effects of two sediment size-classes on survival of steelhead chinook salmon eggs. North American Journal of Fisheries Management, 8:432-437, 1988.
[30] Sakthivadivel, R. and Einstein, H.A. Clogging of Porous Column of Spheres by Sediment. J. Hydraulic Div., ASCE, 96(HY2): 461-472, 1970.
[31] Sakthivadivel, R. Theory and mechanism of filtration of noncolloidal fines through a porous medium, Rep. HEL 15-5, Hydraulic. Eng. Lab., Univ. of Calif., Berkeley, 110pp., 1966.
[32] Sherard, J.L., L.P. Dunnigan, and J. R. Talbot. Basic properties of sand and gravel filters, J. Geotech. Eng., 110(6), 684-700, 1984.
[33] Tappel, P.D. and T.C. Bjornn. A new method of relating size of spawning gravel to salmonid embryo survival. North American Journal of Fisheries Management, 3:123-135, 1983.
[34] Theurer F.D., I. Lines, and T. Nelson. Interaction between riparian vegetation, water temperature, and salmonid habitat in the Tucannon River. Water Resources Bulletin, 21 (1): 53-64, 1985.
[35] Theurer, F.D. Evaluating impacts of soil and water conservation measures. Proceedings, Natural Resources Modeling Symposium, USDA ARS, ARS-30, 1-6, 1985.
[36] Theurer, F.D., A.H. Barnes, and E.V. Richarson. Solution for steady open channel flow. Rivers ’76, Vol. 1, 793-802, 1976.
[37] Theurer, F.D., and W. J. Miller. Draft Tucannon River offsite study: fry emergence model report. 53pp., 1986.
[38] Theurer, F.D., K.A. Voos, and W. J. Miller. Inatream water temperature model. Instream Flow Information Paper 16, U. S. Fish and Wildlife Service, FWS/ OBS-84/15, 1984.
[39] Wu, Fu-Chun. Sediment Intrusion into Gravel Bed. Report of Hydraulic and Coastal Engineering , Dept. of Civil Engineering, University of California, Berkeley, 1991.
[40] Wu, Fu-Chun. Stochastic Modeling of Sediment Intrusion into Gravel Beds. Ph.D. dissertation, University of California, Berkeley, 1993.
[41] Wu, Fu-Chun. Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions. Water Resources Research, Vol. 36, No.6, 1595-1603, 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top