跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃東健
研究生(外文):Dong-Jiann Huang
論文名稱:甘藷蔗糖磷酯合成之生化和分子生物學研究
論文名稱(外文):Biochemical and Molecular Biological Study on Sucrose Phosphate Synthase from Sweet Potato
指導教授:蘇仲卿蘇仲卿引用關係李平篤李平篤引用關係
指導教授(外文):Jong-Ching SuPing-Du Lee
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:農業化學研究所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:163
中文關鍵詞:蔗糖磷酯合成蔗糖甘藷
外文關鍵詞:sucrose phosphate synthasesucrosesweet potato
相關次數:
  • 被引用被引用:1
  • 點閱點閱:262
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
蔗糖磷酯合成(Sucrose phosphate synthase,簡稱 SPS)是植物蔗糖生合成的一個重要酵素。以台農57號甘藷塊根為材料,粗抽液經 DEAE-Sephacel 離子交換層析,24 % PEG沉澱,w-aminohexyl Sepharose 4B和FPLC Mono-Q管柱層析進行酵素純化,得到純化倍率約64倍,回收率約 9% 的SPS製備液。經原態 PAGE 分析測得酵素分子量約 540 kDa,另以SDS-PAGE分析推測其單元體分子量約為130~140 kDa,得知 SPS 可能由同質四元體組成。且其pI值約5.29。
甘藷塊根 SPS並不會受G6P及Pi的異位調控,與光合組織所得者不同。而ATP, ADP, AMP, UTP, UDP, UMP會降低 SPS的活性約 40-50%。但 CTP, GTP, GDP對SPS的活性並沒有產生影響。
甘藷塊根 SPS 對於硫氫化合物很敏感,在低濃度 (0.1 mM) 時 —SH 化合物對酵素有安定作用,但過高 (10 mM 以上) 則反而有明顯抑制作用。SPS 在葡萄糖,葡萄糖胺,麥芽糖,和乳糖中活性會增加,然而 SPS 則被 d-葡萄糖酸內酯完全抑制,可能是酵素會形成不穩定的葡萄糖-酵素化合物之故。硫氫化合物之抑制劑 PCMBS 會隨著濃度增加而降低 SPS 的活性。而另一抑制劑 cibacron blue F3G-A 為 UDPG 的類似物,可以對 SPS 的 UDPG 結合區產生抑制。
以抑制劑 DEP (diethyl pyrocarbonate) 對SPS作修飾作用的分析,因其可以修飾蛋白質中的組胺酸而抑制SPS 催化反應。且SPS 的活性會隨著DEP濃度的增加而減少。且DEP抑制 SPS 的速率常數為 0.25 mM-1. min-1和約有0.62個 DEP可和一個 SPS 分子結合。當僅加入受質 UDPG 或 F6-P 時, SPS活性會被DEP抑制。但若同時加入UDPG和 F 6-P 時,DEP則完全不能抑制 SPS的活性。表示DEP 修飾作用位置應該在UDPG 結合區附近,
利用合成胜片段來製造抗體:其胺酸序列為IRGENMELGRDSDTG,與本實驗所篩選出的甘藷葉子 SPS cDNA推導之胺酸序列中,第177~191 個胺酸完全相同。製備之抗體血清對抗原 SPS之效價測定,當稀釋至 2000倍時免疫呈色反應仍很強,且加入抗體可抑制 SPS 活性。以10% SDS-PAGE 進行免疫分析,約可在130 kDa 染出一條色帶,此色帶應為SPS,但另有一條色帶出現約為 70 kDa,此色帶可能是SPS 的降解產物。以免疫呈色法分析甘藷不同部位組織的 SPS 含量,發現以葉子含量最多,塊根含量最少;而葉子中以幼嫩葉子中 SPS含量較少,成熟的葉子較多。由SPS 的降解研究發現在約3小時 SPS 開始被降解,而在 24小時後 SPS 被完全降解。而加入蛋白抑制劑MG-132時,SPS 並不會被降解,表示用以降解甘藷 SPS之蛋白可能是屬於半胱胺酸型蛋白。且利用免疫沉澱法分析SPS在免疫呈色上可以染出三條色帶分別為 130、100及85 kD,而其中130 kD 為 SPS次單元體,100 kD及85 kD 可能為SPS的降解蛋白片段。
以中型甘藷塊根和葉子的 total RNA 為模版,利用 RT-PCR 可合成出 900 bp 和 600 bp cDNA。經核酸定序的比對證實其為 SPS (GenBank accession no. AF135800, GenBank accession no. AY007199),其推導出之胺酸序列和其他植物比較有相當高的相似性。就篩選出來的甘藷塊根與葉子 cDNA 序列比較有 120 bp 的重疊,其推導出之胺酸相似性為 90%,差異的部分均為非保守性的胺酸。在北方點墨法分析發現甘藷塊根內的 SPS 含量很少,葉子含量最多。在葉子中年輕葉子內的 SPS 含量較少,成熟葉子含量較多。以南方點墨法分析發現甘藷內 SPS 基因在體染色體的 copy number 為一倍。
甘藷 SPS 以免疫組織染色分析發現,在塊根中 SPS 的分布主要在脈狀形成層 (vascular cambium ,VC) 、導管 (xylem vessels, XV) 的周圍和澱粉粒 (starch granule ,SG)的周圍。在甘藷蔓莖中,主要存在的部分亦為脈狀形成層,但乳汁管 (laticifer)中也有發現。而甘藷葉子中,分布的位置在葉肉細胞 (mesophyll cell, M)、葉鞘細胞 (bundle-sheath cell, BS) 附近和導管的周圍。經原位雜交分析發現,甘藷塊根中 SPS 的分布主要在脈狀形成層和澱粉粒的周圍有明顯的呈色。而在甘藷蔓莖中,主要存在的部分亦為脈狀形成層。但在甘藷葉子中,則僅葉肉細胞的周圍有明顯的呈色。
Abstract
Sucrose phosphate synthase (SPS) is one of the key enzymes in the sucrose biosynthesis pathway. SPS was purified 40 folds from crude extract of sweet potato tuberous roots by the methods of batch elution from DEAE-Sephacel, PEG precipitation, w-aminohexyl Sepharose 4B affinity and Mono Q anion exchange chomatographies. Purified SDS was estimated to be 540 kDa from a native PAGE and 130~140 kDa from a SDS-PAGE, respectively. Therefore SPS was predicted to be a homotetramer in its native form.
SPS from the sweet potato tuberous root, which is different from those of photosynthetic tissues, is not allosterically regulated by glucose 6-phosphate and inorganic phosphate. The nucleotides AMP, ADP, ATP, UMP, UDP, UTP and TDP inhibit the enzyme activities about 30~50%. The enzyme was sensitive to sulfydryl reagents, but its activity can be restored with dithiothreitol orβ-mercaptoethanol. The enzyme was activated by glucose, glucosamine, maltose, lactose, while inhibited by
Chemical modification of SPS by diethyl pyrocarbonate (DEP), which modify the histidyl residues of the enzyme protein, resulted in the inactivation of the enzyme activity. The inactivation was dependent on the concentration of the modifying reagent and the time of incubation. The inhibition of SPS by DEP in the rate constants was 0.25 mM-1 min-1 . An inactive enzyme-inhibitor complex was shown to be composed of 1 (enzyme):0.62 (inhibitor) using kinetics experiments. UDPG and F6P, substrates of SPS, protected the enzyme against the inactivation by the modifying reagents. This suggested that the histidine residues may be involved in the binding of these substrates and are essential for the catalytic activity. The results suggest the presence of histidine residue at or near the active site of the enzyme.
Polyclonal antibody against a synthetic peptide (IRGENMELGRDSDTG) was raised rabbit, which corresponded to the 177~191 amino acid sequence of SPS from sweet potato leaf. The serum titer titration can be diluted to two thousand folds and still show satisfying potency. The antibody could inhibit the SPS activity dramatically. Two protein bands with 130 and 70 kDa, respectively, were detected using Western blot. The 70 kDa cound be one of degraded fragments of SPS. Elevated level expression of SPS protein was observed in leaf using Western blot, while a lower expression was seen in tuberous root. Furthermore, the higher amounts of SPS expression were observed in mature leaf than in young leaf of sweet potato.
Using immunoprecipitation techniques, it was found that the antibody could bind 3 peptide fragments. The 130 kDa fragment is the SPS subunit. The 100 and 85 kDa fragments are very likely to be the degraded SPS consisting the epitope.
Two partial cDNA of SPS, with 900 bp and 600 bp cDNA respectively (GenBank accession no. AF135800, GenBank accession no. AY007199) were amplified by RT-PCR using sweet potato tuberous root and leaf total RNA as template. The two cDNA fragments were cloned and were used to study expression of the enzyme during tuberous root and leaf development. The deduced amino acid sequences from determined sequences show that sweet potato SPS has a high homology to the SPS from other species. The cDNA between tuberous root and leaf were overlapped by 120 bp. Within the 120 bp, the amino acid sequences from tuberous root and leaf share about 90% identity. The SPS trascripts could be detected in tuberous root, stem and leaf tissues examined albeit at varying levels. Elevated level of SPS transcript was observed in leaf, while a lower expression was seen in tuberous root. From the RNA blot analysis of young and mature leaves, it was found higher amount of SPS transcripts were observed in mature leaf. And from the results of genomic Southern blot analysis, it was suggested that SPS is an one-copy number gene.
Immunohistological analyses for SPS show that the protein is localized in vascular cambium , xylem vessels, starch granule, bundle-sheath cells and mesophyll cells of sweet potato. In situ hybridization analysis for SPS showed that the protein is localized in vascular cambium, starch granule, and mesophyll cells of sweet potato tissues.
封面
目錄
縮寫表
中文摘要
英文摘要
第一章緒論
1.1蔗糖在植物體內的生理功能
1.2蔗糖磷酯合成?
1.3蔗糖磷酯脢活性之調控
1.4蛋白質14-3-3調控蔗糖磷酯合成脢活性
1.5不同植物間蔗糖磷酯合成脢之比較
1.6蔗糖磷酯合成脢之分子生物學研究
1.7蔗糖磷酯合成脢可能出現複合體
1.8蔗糖磷酯合成脢基因在轉殖植株表現之研究
1.9蔗糖磷酯合成脢在細胞內的角色
1.10蔗糖磷酯合成脢之其他研究
第二章實驗緣起
第三章材料與方法
3.1實驗材料
3.2蛋白質定量法
3.3酵素活性分析
3.3-1蔗糖磷酯合成脢之 酮反應法
3.3-2蔗糖合成脢之純化
3.4蔗糖磷酯合成脢之純化
3.4-1酵素的粗抽及PEG分割
3.4-2w-aminohexyl-Sepharose 4B管柱層析
3.4-3快速蛋白質液相層析
3.4-4膠體過濾管柱
3.5一般電泳檢定法
3.5-1原態膠體電泳
3.5-2SDS膠體電泳
3.5-3膠體染色法:CBR蛋白質染色法
3.5-4膠片乾燥
3.5-5等電交集法
3.6SPS專一性抗體之製備
3.7酵素免疫分析法
3.8蛋白質免疫轉印法
3.8-1蛋白質電泳轉印法
3.8-2酵素免疫染色
3.8-3免疫沉澱法
3.9RNA和DNA之抽取與分析方法
3.9-1全部RNA之抽取
3.9-2RNA甲醛洋菜膠體電泳分析法
3.9-3植物組織DNA的抽取
3.10質體DNA之抽取
3.10-1快速篩選法
3.10-2小量抽取(Miniprep)
3.10-3聚合?鏈鎖反應
3.10-4RT-PCR(reverse transcriptase-PCR)
3.10-5DNA洋菜膠體電泳法
3.10-6DNA片段之分離純化
3.10-7質體DNA之切除
3.10-8pGEMR-T easy vector與insert之粘接
3.10-9質體之轉型
3.10-10質體轉移至E.Coli JM109
3.11核酸轉印
3.11-1DNA轉印法(Southern blot)
3.11-2DNA轉印
3.11-3RNA轉印法(Northern blot)
3.11-4雜交反應
3.11-5探針反應
3.12甘藷蔗糖磷酯合成脢(SPS)cDNA專一性探針(probe)的製備
3.12.1甘藷塊根SPScDNA專一性探針的製備
3.12.2甘藷葉子SPScDNA專一性探針的製備
3.13DNA定序
3.14植物組織切片的製備
3.15原位雜交(In situ hybridization)
3.15-1DIG-labeled RNA探針之製備
3.15-2In situ hybiridization
3.15-3酵素免疫染色法
3.15-4PAS染色法
3.15-5脫水與封片
第四章結果與討論
4.1甘藷塊根蔗糖磷酯合成脢之純化與性質研究
4.1-1甘藷不同部位組織蔗糖磷酯合成之活性大小
4.1-2甘藷塊根蔗糖磷酯合成脢蛋白質的純化
4.1-3甘藷塊根蔗糖磷酯合成脢之分子量測定
4.1-4甘藷塊根蔗糖磷酯合成脢之分子等電泳分析
4.1-5核?酸對甘藷塊根蔗糖磷酯合成脢之活性影響
4.1-6醣類對甘藷塊根蔗糖磷酯合成脢之活性影響
4.1-7硫氫化合物對甘藷塊根蔗糖磷酯合成脢之活性影響
4.1-8抑制劑對甘藷塊根蔗糖磷酯合成脢之活性影響
4.2DEP(diethyl pyrocarbonate)對於甘藷塊根蔗糖磷酯合成脢修飾作用的分析
4.2-1不同DEP的濃度和時間對於蔗糖磷酯合成脢修飾作用的影響
4.2-2DEP對蔗糖磷酯合成脢的影響
4.2-3NH2OH減緩DEP對蔗糖磷酯合成脢的活性抑制
4.2-4DEP對於蔗糖磷酯合成脢中加入DTT和DTNB修飾作用的影響
4.2-5DEP的修飾作用對於蔗糖磷酯合成脢中受質和活化劑的影響
4.2-6甘藷蔗糖磷酯合成脢可能和DEP作用的胺酸位置圖
4.3SPS專一性抗體之製備
4.3-1搞原決定基區域勝?片段的選擇和抗體的製備
4.3-2測量抗體對抗原SPS之效價測定
4.3-3抗體性質的分析
4.3-4甘藷不同部位組織中SPS的活性
4.3-5甘藷塊根及葉子組織中SPS的降解研究
4.3-6利用免疫沉澱法分析甘藷蔗糖磷酯合成
4.4甘藷塊根及葉子分子生物學研究
4.4-1甘藷塊根及葉子總RNA的抽取
4.4-2甘藷塊根蔗糖磷酯合成脢基因之選殖
4.4-3甘藷葉子蔗糖磷酯合成脢基因之選殖
4.4-4甘藷塊根及葉子蔗糖磷酯合成脢cDNA及其胺酸的比對
4.4-5甘藷塊根及葉子蔗糖磷酯合成脢核酸探針的製備
4.4-6北方點墨法分析
4.4-7南方點墨法分析
4.5甘藷內蔗糖磷酯合成脢組織定位的分析
4.5-1甘藷組織內PAS染色分析
4.5-2甘藷組織蔗糖磷酯合成脢的免疫組織染色分析
4.5-3甘藷組織蔗糖磷酯合成脢的原位雜交分析
第五章結論與展望
第六章參考文獻
Akira, K., Takanokura, M., and Akihama, O. T. (1996) Cloning and molecular analysis of cDNAs encoding three sucrose phosphate synthase isoforms from a citrus fruit (Citrus unshiu Marc.). Mol.Gen.Genet. 252:346-351.
Ap, Rees, T. (1984)Sucrose metabolism. In storage carbohydrates in vascular plants. pp. 53-57 Cambridge University Press. London.
Arguelle-Astorga, G., and Herrera-Estrella, L. (1996) Ancentral multipartite unit in light-responsive plant promoters have structural features correlating with specific phototransduction pathways. Plant Physiol. 112: 1151-1166.
Baker, SS., Wilhelm, KS., and Thomashow, MF. (1994) The 5'-region of Arabidopsis thaliana cor15a has cis-acting element that confer cold-, drought- and ABA-regulated gene expression. Plant Mol. Biol. 24: 701-713.
Bruneau, J. M., Worrell, A. C., Cambou, B., Lando, D., and Voelker, T. A., (1991) Sucrose phosphate synthase, a key enzyme for sucrose biosynthesis in plants. Protein purification from corn leaves and immunological detection. Plant Physiol. 96:473-478
Castrillo, M., (1992) Sucrose metabolism in bean plants under water deficit. J. Exp. Bot. 43:1557 ~ 1561
Cardini, C. E., Leloir, L. F., and Chiriboga, J.(1955) The biosynthesis of sucrose. J. Biol. Chem. 214:149-154.
Chavez-Barcenas AAT., Valdez-Alarcon JJ, M-T M, Chen L., and Herrera-Estrela L. (2000) Tissue-specific and developmental pattern of expression of the rice sps1 gene. Plant Physiol. 124:641-654.
Cheink, N., and Brenner, M. L. (1992) Effect of dark and light conditions and role of gibberellins and abscisic acid. Plant Physiol. 100:1230 ~ 1237
Cheikh, N., Brenner, M. L., Huber, J. L., and Huber, S. C., (1992) Regulation of sucrose phosphate synthase by gibberellins in soybean and spinach plants. Plant Physiol. 100:1238 ~ 1242
Cheng, W.-H., Im, K.H. and Chourey, P. S. (1996) Sucrose phosphate synthase expression at the cell and tissue level is coordinated with sucrose sink-to-source transitions in maize leaf. Plant Physiol.111:1031-1029.
Dikran, T., Athwal, G. S. and Huber, S.C. (1998) Site-specific regulatory interaction between spinach leaf sucrose-phosphate synthase and 14-3-3 proteins. FEBS Letters 435:110-114.
Douglas, C. D., and Huber, S. C. (1983) Regulation of spinach leaf sucrose phosphate synthase by glucose-6-phosphate, inorganic phosphate, and pH. Plant Physiol 73 :989-994
Dubray, G., and Benzard, G. (1982) A high sensitive periodic acid-silver stain for 1,2-diol groups of glycoproteins and polysaccharides in polyacrylamide gels. Anal Biochem 119: 325-329.
Gabriela, C. P., Leonardo, C., and Salerno, G. L. (2000) Rice sucrose-phosphate synthase: Identification of an isoform specific for hetertrophic tissues with distinct metabolite regulation from the mature leaf enzyme. Physiol. Plant. 108: 337-344.
Galtier, N., Foyer, C. H., and Huber, J. L. A. (1993) Effects of elevated sucrose-phosphate synthase activity on photosynthesis, assimilate partitioning and growth in tomato (Lycopersicon esculentum var. UC 82B). Plant Physiol. 101:535-543
Galtier, N., Foyer. C. H., Murchie, E., Alred, R., and Quick, P. (1995) Effects of light and atmospheric carbon dioxide enrichment on photosynthesis and carbon partitioning in the leaves of tomato ( Lycopersicon esculentum L.) plant over-expressing sucrose phosphate synthase. J. Exp. Bot. 46:1335-1344
Giuliano, G. Pickersky, E. Malik, V. S. Timko, MP. Scolnick PA. and Cashmore AR. (1988) An evolutionary conserved protein binding sequence upstream of a plant light regulated gene. Proc. Natl. Sci. USA. 85: 7089-7093.
Greg, L.,R. Mchale, R. C. Gardner and MacRae, E. (1998) Sucrose-phosphate synthase steady-state mRNA increases in ripening kiwifruit. Plant Mol. Biol. 36:875-869.
Greg, M., P. Douglas, and Mackintosh, Carol (1999) Phosphorylation-dependent interactions between enzymes of plant metabolism and 14-3-3 proteins. Plant J. 18:1-12.
Geigenberger, P., Krause K-P., Hill LM., Reimholz R., and Macrae, E.(1995)The regulation of sucrose synthesis in leaves and tuber of potato plants. Sucrose metabolism. Biochemistry, Physiology and Molecular Biology. pp.14-24.
Guy, C. L., Huber, J. L. A., and Huber, S. C. (1992) Sucrose phosphate synthase and sucrose accumulating at low temperature. Plant Physiol. 100:502 ~ 503
Harn, C., Khayat, E., and Daie, J. (1993) Expression dynamics of genes encoding key carbon metabolism enzymes during sink-to-source transition of developing leaves. Plant Cell Physiol 34: 1045—1053
Hatzfeld, Wolf-D., and Moesinger, E. (1995) Active-site-directed inhibition of sucrose-phosphate synthase by Cibacron blue F3G-A and 1-deoxynojirimycin. Planta 197:296-230
Heim, U., Weber, H. and Wobus, U. (1996) Cloning and characterization of full-length cDNA encoding sucrose phosphate synthase from faba bean. Gene. 178 : 201-203.
Holger, H., Sonnewald, U. and Willmitzer, L. (1995) Cloning and expression analysis of sucrose-phosphate synthase from sugar beet (Beta vulgaris L.). Mol. Gen. Genet. 247:515-520.
Huang, N., Sutliff, TD., Litts, JC., and Rodriguez, RL.(1990) Clasification and characterization of riceα-amylase multigene family. Plant Mol. Biol. 14: 655-668.
Huber, S. C., Rufty, T. W., and Keer, P. S. (1984) Effect of photoperiod on photosynthesis partitioning and diurnal rhythms in sucrose phosphate synthase activity in leaves of soybean and tobacco. Plant Physiol. 75 :1080-1084
Huber, J. I. A., Huber, S.C., and Nielsen, T. H. (1989) Protein phosphorylation as a mechanism for regulation of spinach leaf sucrose-phosphate synthase activity. Arch. Biochem. Biophy. 270: 681-690
Huber, S. C., Nielsen, T. H., Huber, J. L. A., and Pharr, D. M. (1989) Variation among species in light activation of sucrose-phosphate synthase. Plant Cell Physiol. 30:277-285
Huber, S. C., and Huber, J. L.(1991) In vitro phosphorylation and inactivation of spinach leaf sucrose-phosphate synthase by an endogenous protein kinase. Biochim. Biophts. Acta. 1091:393-400.
Huber, S. C., and Huber, J. L.(1992)Role of sucrose-phosphate synthase in sucrose metabolism in leaves. Plant Physiol. 99:1275-1278.
Huber, S. C., and Huber, J. L. (1996) Role and regulation of sucrose-phosphate synthase in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 17:431-444
Hurry, V. M., Malmberg, G., Gardestrom, P., and Oquist, G. (1994) Effects of a short-term shift to low temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity in leaves of winter rye ( Secale cereale L. ) Plant Physiol. 106:983 ~ 990.
John, E., and Robert, T. Furbank (1997) Localisation of sucrose-phosphate synthase and starch in leaves of C4 plants. Planta. 202:106-111.
Kleim, R. R., Crafts-Brandner, S. J., and Salvucci, M. E. (1993)Identification of uridine binding domain of sucrose-phosphate synthase . Cloning and expression of a region of the protein that photoaffinity labels with 5-azidouridine diphosphate-glucose. Plant Physiol. 102:529-536
Klein, R. R., Crafts-Brandner, SJ., and Salvucci, ME. (1993) Cloning and developmental expression of the sucrose phospate synthase gene from spinach. Planta. 190: 498-510.
Lunn, J. E., and Ap,-Rees, T. (1990) Purification and properties of sucrose phosphate synthase from seeds of Pisum sativum. Phytochemistry. 29:1057-1063
McMichael, R. W. Jr., Klein. R. R., Salvucci. M. E., and Huber, S. C.(1993)Identification of the major regulation phosphorylation site in sucrose phosphate synthase. Arch. Biochem. Biophys. 307:248-252.
McMichael, R. W. Jr., Bachman, M., and Huber, S. C. (1995)Spinach leaf sucrose-phosphate synthase and nitrate reductase are phosphorylated/inactivated by multiple protein kinase in vitro. Plant Physiol. 108:1077-1082.
Micallef, B. F., Haskin, K. A., Vanderveer, P. J., Roth, K. S., Shewmaker, C. K., and Sharkey, T. D. (1995) Altered photosynthesis, flowering and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta. 196:327-334
Muller-Rober, B.T., Sonnewald, U., and Willmitzer, L. (1992) Inhibition of ADP-glucose pyrophosphorylase leads to sugar storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J. 11:1229-1238.
Pontis, H.G. (1978)On the scent of riddle of sucrose. Trend in Biochem. Sci. 3:137-139.
Reimholz, R., Geigenberger, P., and Stitt, M. (1994) Sucrose phosphate synthase is regulated via metabolites and protein phosphorylation in potato tubers, in a manner analogous to the enzyme in leaves. Planta. 192 :480-488.
Ryu, O., and Huber, S.C. (1987) Light modulation and localization of sucrose phosphate synthaase activity between mesophyll cells and bundle sheath cells in C4 species. Plant Physiol. 84:1096-1101.
Sakamoto, M., Satozawa, T. Higo, K., Shimada, H., and Fujimura, T. (1995) Structure and RFLP mapping of a rice sucrose-phosphate synthase (SPS) gene that is specifically expressed in the source organ. Plant Sci. 112 : 207-217.
Salerno, G.L., Crespi, M.D., Zabaleta, E.J., and Pontis, H.G. (1991) Sucrose-phosphate synthase from wheat.Characterization of peptides by immunoblotting analysis. Physiol. Plant. 81: 541-547.
Salerno, G.L., Pagnussat, G.C., and Pontis, H.G. (1998) Studies on sucrose-phosphate synthase from rice leaves. Cell. Mol. Biol. 44: 407-416.
Salvucci, M. E., Drake, R. R., and Haley, B. B. (1990) Purification and photoaffinity labeling of sucrose phosphate synthase from spinach leaves. Arch. Biochem. Biophys. 281:212-218
Sinha, A.K., Pathre, U. and Sane, P.V. (1997) Purification and characterization of sucrose phosphate synthase from Prosopis juliflora. Phytochemsty. 46: 441-447
Sinha, A.K., Pathre, U., and Sane, P.V. (1998) Essential histidyl residues at the active sites of sucrose phosphate synthase from Prosopis juliflora. Biochimica rt Biophysica Acta. 1388: 397-404
Singh, M. B., and Knox, R. B. (1984)Invertases of Lilium pollen. Characterization and activity during in vitro germination. Plant Physiol. 74:510-515.
Siegl, G., and Stitt, M. (1990) Partial purification of two forms of spinach sucrose-phosphate synthase which differ in their kinetic properties. Plant Sci. 66:205-210
Stitt, M., Wilke, I., Feil, R., and Heldt, H. W. (1988) Coarse control of sucrose -phosphate synthase in leaves . Planta. 174:217-230
Stitt, M., and Sonnewald, U. (1995) Regulation of metabolism in transgenic plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46:341-368
Valerie, cotelle, Sarch, E., Meek, M., and Carol, Mackintosh. (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J. 19:2869-2876.
Vassey, T. L., and Sherkey, T. D. (1989) Mild water stress of Phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity. Plant Physiol. 89:1066 ~ 107010.
Valdez-Alarcon, J. J., Ferrando, M., Salerno, G., Jimenez-Moraila, B., and Herrera-Hstrella, L. (1996) Characterization of a rice sucrose-phosphate synthase -encoding gene. Gene. 170:217-222
Vllrich, A., Shine, J., Chirguin, J., Pictet, R., Tischer, E., Rutter, W.J., and Goodman, H.M. (1977) Rat insulin gene:construction of plasmids containing the codin sequences. Science. 196 : 1313-1319.
Walker, J, L., and Huber, S. C. (1989) Regulation of sucrose-phosphate synthases activity in spinach leaves by protein level and covalent modification. Planta 177:116-120
Walker, J, L., and Huber, S. C. (1989) Purification and preliminary characterization of sucrose-phosphate synthase using monoclonal antibodies. Plant Physiol. 89:518-524.
Wang, MB., Boulter, D., and Gatehous, JA. (1992) A complete sequence of the rice sucrose synthase-1 (Rsus1). Plant Mol. Biol. 19: 881-885.
Weiner, H., McMichael, R. W. Jr., and Huber, S. C. (1992) Identification of factors regulating the phosphorylation status of sucrose-phosphate synthase in vivo. Plant Physiol. 99:1435-1442
Worrell, A. C., Bruneau, J. M., Summerfelt, K., Boersig, M., and Voelker, T. A. (1991)Expression of a maize sucrose phosphate synthase in tomato alters leaf carbohydrate partitioning. Plant Cell. 3:1121-1130.
Zrenner, R., Salanoubat, M., Willmitzer, L., and Sonnewald, U. (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants ( Solanum tuberosum L. ) Plant J. 7:97-107
莊榮輝(1985)水稻蔗糖合成之研究。博士論文,國立台灣大學農業化學研究所
劉邦熙(1997)甘藷塊根蔗糖磷酯合成之生化研究。碩士論文。國立台灣大學農業化學研究所
陳韋良 (1998) 甘藷塊根蔗糖磷酯合成之生化學研究。碩士論文。國立台灣大學農業化學研究所
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top