(18.210.12.229) 您好!臺灣時間:2021/03/01 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張英堂
研究生(外文):Ying-Tang Chang
論文名稱:主動式倍頻器與濾波器之研製
論文名稱(外文):HEMT Frequency Multiplier and Filter Design
指導教授:王暉
指導教授(外文):Huei Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:98
中文關鍵詞:倍頻器
外文關鍵詞:DoublerTriplerQuadruplerFilterHousing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:372
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:57
  • 收藏至我的研究室書目清單書目收藏:0
本論文著眼於毫米波段之倍頻器和濾波器研製。倍頻器部分,包括一個單晶二倍頻器(42.5-to-85 GHz),兩個單晶三倍頻器(14-to-42 GHz和31-to-94 GHz),以及一個單晶四倍頻器(19-to-76 GHz)。濾波器部分,主要設計為了點對多點分佈式服務系統,包括接收端27.35~28.35 GHz和發射端31~31.3 GHz兩個頻段。
毫米波段之倍頻器採用單晶微波積體電路(microwave/millimeter-wave monolithic integrated circuit, MMIC)之架構。兩倍頻及三倍頻器採用0.1 微米閘極長之高電子移動度場效電晶體製程,在砷化鎵基材上,使用微帶線設計,而製程則透過國科會晶片中心取得美國TRW之代工服務。
四倍頻則採用0.15微米閘極長之高電子移動度場效電晶體。為了證明平衡式架構可利用相位關係抑制兩倍頻的訊號,我們成功地在FR4電路版上製作了一個混成型(hybrid)平衡式四倍頻器。
濾波器採用微帶線設計,於氧化鋁基板上製作。封裝效應對濾波器頻率響應的影響藉由實際製作與量測亦被驗證。因此封裝效應必須在濾波器開始設計時先行考慮。至於濾波器模擬與量測結果的一致性,可提供準確的設計。
This thesis describes the HEMT frequency multiplier design and filter design at millimeter-wave frequency. HEMT frequency multipliers include a monolithic 42-to-84 GHz doubler, a monolithic 14-to-42 GHz tripler, a monolithic 31-to-94 GHz balanced tripler, and a monolithic 19-to-76 GHz balanced quadrupler. Filters are designed for a local multi-point distributed service (LMDS) system. The 27.35~28.35 GHz filter is used at receiver-end and the 31~31.3 GHz filter is used at transmitter-end.
For the millimeter-wave frequency band, monolithic microwave integrated circuit frequency multipliers are designed with microstrip line configuration. The MMIC frequency doubler and triplers are fabricated on 4-mil-thick GaAs substrates using 0.1-μm InGaAs/AlGaAs/GaAs PHEMT technology provided by commercially available foundry service, which is accessed through the Chip Implementation Center of National Science Council of Taiwan.
The MMIC balanced frequency quadrupler is fabricated on 4-mil-thick GaAs substrates using 0.15-μm InGaAs/AlGaAs/GaAs PHEMT technology. In order to prove the balanced configuration that can suppress the second harmonic signal by phase cancellation nature, a hybrid circuit was implemented on FR4 substrates using PHEMT devices, respectively.
The filters for a LMDS system are manufactured on Al2O3 substrates with microstrip coupled line configuration. The box resonance are observed by the measurement of both receiver-end and transmitter-end filter with different box height. Hence, housing effect should be considered in the beginning of filter design. Besides, the simulated results of both Rx and Tx filters are close to measurement.
Chapter 1: Introduction----------------------------------------1
1.1 Introduction 1
1.2 Chapter Outline 1
Chapter 2: Design Methodology of Active Multiplier---------4
2.1 Introduction 4
2.2 Bias condition 5
2.2.1 Class A 5
2.2.2 Class B 7
2.3 Active Multiplier Design 10
2.3.1 Single-ended and Balanced Configurations 10
2.3.2 Input and Output Matching Network Configurations 11
Chapter 3: Monolithic HEMT Frequency Doubler and Tripler------13
3.1 Overview 13
3.2 MMIC Foundry Description 14
3.3 42.5-to-85 GHz HEMT Frequency Doubler 15
3.3.1 Device Selection 15
3.3.2 Circuit Design 15
3.3.3 Simulated Results 16
3.4 14-to-42 GHz HEMT Frequency Tripler 20
3.4.1 Circuit Design 20
3.4.2 Simulated Results 20
3.5 W-band Balanced HEMT Frequency Tripler 25
3.5.1 Circuit Design 25
3.5.2 Simulated Results 26
Chapter 4: Balanced HEMT Frequency Quadrupler-----------------32
4.1 Overview 32
4.2 Hybrid Balanced HEMT Frequency Quadrupler 34
4.2.1 Device Description 34
4.2.2 Circuit Design 38
4.2.3 Measured Results 43
4.3 MMIC Balanced HEMT Frequency Quadrupler 46
4.3.1 Overview 46
4.3.2 MMIC Foundry Description 46
4.3.3 Circuit Design 47
4.3.4 Simulated Results 51
4.4 Conclusion 55
Chapter5: 27-31 GHz Filter Design-----------------------------57
5.1 Principle of Filter Design 58
5.1.1 Lumped-element filter 58
5.1.1.1 The Classification of Filter 58
5.1.1.2 Design Method 59
5.1.1.3 Low-pass Filter to Bnad-pass Filter Transformation 60
5.1.2 Distributed Band-pass Filter 63
5.1.2.1 Transmission Line Resonator 63
5.1.2.2 Impedance and Admittance Inverters 64
5.1.3 Coupled Line Band-pass Filter 66
5.1.4 Band-pass Filter Using Capacitively Coupled Resonators 68
5.2 Housing Effect 70
5.3 Filter Design for LMDS 74
5.3.1 Receiver-end Filter Design 78
5.3.2 Transmitter-end Filter Design 88
Chapter6: Summary---------------------------------------------94
Reference-----------------------------------------------------96
[1] H. Wang et al., “Monolithic W-band VCOs using pseudomorphic AlGaAs/InGaAs/GaAs HEMT’s,” in 14th Ann. IEEE GaAs IC Symp. Dig., Miami, FL, Oct. 1992, pp. 47-50.
[2] Y. Kwon et al., “Larger signal analysis and experimental characteristics of monolithic InP-based W-band HEMT oscillators,” in 21th European Microwave Conf. Tech. Dig., Stuttgart, Germany, Sept. 1991.
[3] H. Wang et al. “Monolithic V-band frequency converter chip set development using 0.2 μm AlGaAs/InGaAs pseudomorphic HEMT technology,” IEEE Trans. Microwave Theory and Tech.,vol. 42, no. 1, Jan. 1994.
[4] S. W. Chen et al., “Rigorous design of a 94 GHz MMIC doubler,” in IEEE 1993 Microwave and Millimeter-wave Monolithic Circuits Symp. Dig., Atlata, GA, June 1993, pp. 89-92.
[5] H. Wang et al. “Monolithic 23.5 to 94 GHz frequency quadrupler using 0.1 /spl mu/ m pseudomorphic AlGaAs/InGaAs/GaAs HEMT technology,” IEEE Microwave and Guided Wave Letters, vol. 3, no. 3,pp. 77-79, March 1994.
[6] Stephen A. Maas, The RF and microwave circuit design cookbook, Artech House, Norwood, MA, 02062, 1997
[7] Howard Fudem et al. “Novel millimeter wave active MMIC triplers,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 387-390, 1998.
[8] Ali Boudiaf et al. “A High-Efficiency and Low-Phase-Noise 38-GHz pHEMT MMIC Tripler,” IEEE Trans. Microwave Theory Tech, vol. 48,no. 12, pp. 2546-2553, Dec. 2000.
[9] Guohao Zhang et al. “A novel technique for HEMT tripler design,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 663-666, 1996.
[10] Edmar Camargo, Design of FET frequency multipliers and harmonic oscillators, Artech House, Norwood, MA, 02062, 1998
[11] Using Series IV for circuit Design E4602A+24D, Hewlett-Packard Company, U.S.A., 1997.
[12] Howard Fudem et al. “Novel millimeter wave active MMIC triplers,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 387-390, 1998.
[13] Huei Wang et al. “Novel W-band monolithic push-pull power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 30, no. 10, pp. 1055-1061, Oct. 1995.
[14] C. C. Liu, “Design of 2.4 and 35-GHz power amplifiers,” Master Thesis, National Taiwan University, June 1999.
[15] Hiroshi Okazaki et al. “Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microwave Theory Tech, vol. 45,no. 12, pp. 2375-2379, Dec. 1997.
[16] I. Telliez et al. “Millimeter wave phase locked oscillator for mobil communication systems,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 49-52, 1995.
[17] Y. Campos-Roca et al. “Coplanar PHEMT MMIC frequency multipliers for 76-GHz automotive radar” IEEE Microwave and Guided Wave Letters, vol. 9, no. 6,pp. 242-244, June 1999.
[18] Kazuo Shirakawa et al. “A 15/60 GHz one-stage MMIC frequency quadrupler,” IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium, pp. 35-38, 1996.
[19] Hiroshi Okazaki et al. “Wide-band SSB subharmonically pumped mixer MMIC,” IEEE Trans. Microwave Theory Tech, vol. 45, no. 12, pp. 2375-2379, Dec. 1997.
[20] Tetsuo Hirota et al. “Reduced-size branch-line and rat-race hybrids for uniplanar MMIC’s,” IEEE Trans. Microwave Theory Tech, vol. 38, no. 3, pp. 270-275, March 1990.
[21] Schmale, I. et al. “Improving balanced frequency doublers through a design approach insensitive to residual asymmetries,” IEEE MTT-S International Microwave Symposium Digest, vol. 2, pp. 733-736, 1999.
[22] Y. Campos-Roca et al., “38/76 GHz PHEMT MMIC balanced frequency doublers in coplanar technology,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 11,pp. 484-487, Nov. 2000.
[23] Carl Creamer et al. “43.5 to 45.5 GHz active times-4 frequency multiplier with 1.4 watt output power,” IEEE MTT-S International Microwave Symposium Digest, 1991.
[24] Tetsuo Hirota et al. “Uniplanar monolithic frequency doublers” IEEE Trans. Microwave Theory Tech, vol. 37, no. 8, pp. 1249-1254, Aug. 1989.
[25] Long Tran et al. “Frequency translation MMICs using InP HEMT technology,” IEEE MTT-S International Microwave Symposium Digest, 1996.
[26] Huei Wang et al., “A W-band source module using MMICs,” IEEE MTT-S Digest, pp. 91-94, 1994.
[27] G. Matthaei, L. Young, and E. Jones, Microwave Filters, Impedance Matching Networks, and Coupling Structures. Norwood, MA: Artech House, 1980.
[28] David M. Pozar, Microwave Engineering. John Wiley & Sons, Inc., 1998
[29] Sonnet user’s manual. Sonnet Software, Inc.
[30] Jae-Ryong Lee et al. “New compact bandpass filter using microstrip λ/4 resonators with open stub inverter,” IEEE Microwave and Guided Wave Letters, vol. 10, no. 12, pp. 526-527, Dec. 2000.
[31] M.T. Chen et al., “Receiver for AmiBA: prototype concepts,” submitted to Asia Pacific Radio Science Conference, 2001.
[32] A. J. McCant et al., "An improved GaAs FET model for SPICE," IEEE Trans. Microwave Theory Tech., Vol. MTT-38, pp. 822-824, June, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔