|
A. Fractional Fourier transform [A1] V. Namias, ‘The fractional order Fourier transform and its application to quantum me-chanics’, J. Inst. Maths. Applics., vol. 25, p. 241-265, 1980. [A2] A. C. McBride and F. H. Kerr, ‘On Namias’s fractional Fourier transforms’, IMA J. Appl. Math., vol. 39, p. 159-175, 1987. [A3] L. B. Almeida, ‘The fractional Fourier transform and time-frequency representations’, IEEE Trans. Signal Processing, vol. 42, no. 11, p. 3084-3091, Nov. 1994. [A4] N. Wiener, ‘Hermitian polynomials and Fourier analysis’, Journal of Mathematics Physics MIT, vol. 18, p. 70-73, 1929. [A5] A. I. Zayed, ‘On the relationship between the Fourier transform and fractional Fourier transform’, IEEE Signal Processing Letters, vol. 3, no. 12, p. 310-311, Dec. 1996. [A6] H. M. Ozaktas, M. A. Kutay, and D. Mendlovic, ‘Introduction to the fractional Fourier transform and its applications’, Advances in Imaging and Electron Physics, vol. 106, Academic Process, Chapter 4, 1999. [A7] H. M. Ozaktas, M. A. Kutay, and Z. Zalevsky, “The Fractional Fourier Transform with Applications in Optics and Signal Processing”, John Wiley & Sons, 2000. [A8] T. Alieva and M. J. Bastiaans, ‘On fractional Fourier transform moments’, IEEE Sig-nal Processing Letters, vol. 7, no. 11, p. 320-323, Nov. 2000. [A9] E. U. Condon, ‘Immersion of the Fourier transform in a continuous group of function-al transformations’, Proc. National Academy of Sciences, vol. 23, p. 158-164, 1937. B. Linear canonical transform [B1] K. B. Wolf, “Integral Transforms in Science and Engineering”, Ch. 9: Canonical transforms, New York, Plenum Press, 1979. [B2] M. Moshinsky and C. Quesne, ‘Linear canonical transformations and their unitary representations’, J. Math. Phys., vol. 12, no. 8, p. 1772-1783, Aug. 1971. [B3] S. Abe and J. T. Sheridan, ‘Optical operations on wave functions as the Abelian sub-groups of the special affine Fourier transformation’, Opt. Lett., v. 19, n. 22, p. 1801-1803, 1994. [B4] A. Papoulis, “Signal Analysis”, McGraw Hill, 1977. [B5] L. M. Bernardo, ‘ABCD matrix formalism of fractional Fourier optics’, Optical Eng., vol. 35, no. 3, p 732-740, March 1996. [B6] V. Bargmann, ‘On a Hilbert space of analytic functions and an associated integral transform, Part I’, Comm. Pure. Appl. Math., vol. 14, p. 187-214, 1961. [B7] J. Hua, L. Liu, and G. Li, ‘Extended fractional Fourier transforms’, J. Opt. Soc. Am. A, vol. 14, no. 12, p. 3316-3322, Dec. 1997. C. Conventional Fourier, cosine, sine, Hartley transforms [C1] R. N. Bracewell, “The Fourier Integral and Its Applications”, 3rd ed., McGraw Hill, Boston, 2000. [C2] N. Ahmed, T. Natarajan, and K. R. Rao, ‘Discrete cosine transform’, IEEE Trans. Comput., vol. C-23, p 90-93, Jan 1974. [C3] K. R. Rao and P. Yip, “Discrete Cosine Transform, Algorithms, Advantage, Applica-tions”, New York: Academic, 1990. [C4] R. N. Bracewell, “The Hartley Transform”, New York, Oxford University Press, 1986. [C5] B. G. Lee, ‘A new algorithm for computing the discrete cosine transform’, IEEE Trans. Acoust., Speech, Signal Processing, vol. 32, p. 1243-1245, Dec. 1984. [C6] P. Z. Lee and F. Y. Huang, ‘Restructured recursive DCT and DST algorithms’, IEEE Trans. Signal Processing, vol. 42, p. 1600-1609, Jul. 1994. [C7] Z. Cvetkovic and M. V. Popovic, ‘New fast recursive algorithms for the computation of discrete cosine and sine transforms’, IEEE Trans. Signal Processing, vol. 40, p. 2083-2086, Aug. 1992. [C8] H. V. Sorensen, ‘On computing the discrete Hartley transform’, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-33, no. 4, p. 1231-1238. Oct. 1985. [C9] S. C. Chan and K. L. Ho, ‘Prime factor real-valued Fourier, cosine and Hartley trans-form’, Proc. Signal Processing VI, p. 1045-1048, 1992. [C10] C. W. Kok, ‘Fast algorithm for computing discrete cosine transform’, IEEE Trans. Signal Processing, vol. 45, no. 3, p. 757-760, March 1997. D. Wigner distribution and other time-frequency analysis tools and their relations with FRFT / LCT [D1] S. C. Pei and J. J. Ding, ‘Relations between the fractional operations and the Wigner distribution, ambiguity function’, to appear in IEEE Trans. Signal Processing, 2001. [D2] E. P. Wigner, ‘On the quantum correlation for thermodynamic equilibrium’, Phys. Rev., vol. 40, p. 749-759, 1932. [D3] F. Hlawatsch, G. F. BoudreauxBartels: “Linear and quadratic time-frequency signal representation”, IEEE Signal Processing Magazine, p. 21-67, Apr. 1992. [D4] T. A. C. M. Classen and W. F. G. Mecklenbrauker, “The Wigner distribution a tool for time-frequency signal analysis; Part I: continuous time signals”, Philips J. Res., vol. 35, p. 217-250, 1980. [D5] A. W. Lohmann, ‘Image rotation, Wigner rotation, and the fractional Fourier trans-form’, J. Opt. Soc. Am. A, vol. 10, no. 10, p. 2181-2186, Oct. 1993. [D6] Mustard D. A., ‘The fractional Fourier transform and the Wigner distribution’, J. Australia Mathematics Society B, vol. 38, p. 209-219, 1996. [D7] S. G. Mallat and Z. Zhang, ‘Matching pursuits with time-frequency dictionaries’, IEEE Trans. on Signal Processing, vol. 41, no. 12, p 3397-3415, Dec. 1993. E. Eigenfunctions of FRFT / LCT [E1] D. F. V. James and G. S. Agarwal, ‘The generalized Fresnel transform and its applica-tions to optics’, Opt. Commun., vol. 126, May 1996, p 207-212. [E2] S. C. Pei and J. J. Ding, ‘Eigenfunctions of the canonical transform and the self-imaging problems in optical system’, ICASSP’00, vol. 1, p. 73-76. [E3] S. C. Pei and J. J. Ding, ‘Eigenfunctions of linear canonical transform’, submitted to IEEE Trans. Signal Processing. [E4] T. Alieva and A. M. Barbe, ‘Self-fractional Fourier functions and selection of modes’, J. Phys. A: Math. Gen., vol. 30, 1997, p 211-215. [E5] T. Alieva and A. M. Barbe, ‘Self-imaging in fractional Fourier transform systems’, Opt. Commun., vol. 152, June 1998, p 11-15. [E6] K. Paiorski, ‘The self-imaging phenomenon and its applications’, in “Progress in Op-tics”, edited by E. Wolf, vol. 27, part 1, North-Holland, 1989. [E7] M. J. Caola, ‘Self-Fourier functions’, J. Phys. A: Math. Gen., vol. 24, 1991, p 1143-1144. [E8] G. Cincotti, F. Gori and M. Santarsiero, ‘Generalized self-Fourier functions’, J. Phys. A: Math. Gen., vol. 25, p 1191-1194, 1992. [E9] D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, ‘Self Fourier functions and frac-tional Fourier transform’, Opt. Commun., vol. 105, p 36-38, Jan. 1994. [E10] T. Alieva, ‘On the self-fractional Fourier functions’, J. Phys. A: Math. Gen., vol. 29, p 377-379, 1996. [E11] B. W. Dikinson and K. Steiglitz, ‘Eigenvectors and functions of the discrete Fourier transform’, IEEE Trans. Acoust., Speech, Signal Process., vol. 30, p 25-31, 1982. F. Implementation of FRFT and LCT [F1] H. M. Ozaktas, O. Arikan, ‘Digital computation of the fractional Fourier transform’, IEEE Trans. on Signal Proc., vol. 44, no. 9, p. 2141-2150, Sep. 1996. [F2] X. Deng, B. Bihari, J. Gan, F. Zhou, and R. T. Chen, ‘Fast algorithm for chirp trans-forms with zoomingin ability and its applications’, J. Opt. Soc. Am. A, vol. 17, no. 4, p. 762-771, Apr. 2000. [F3] X. G. Xia, ‘On bandlimited signals with fractional Fourier transform’, IEEE Signal Processing Letters, vol. 3, no. 3, p. 72-74, Mar. 1996. [F4] F. J. Marinho and L. M. Bernardo, ‘Numerical calculation of fractional Fourier trans-forms with a single fast-Fourier-transform algorithm’, J. Opt. Soc. Am. A, vol. 15, no. 6, p. 2111-2116, Aug. 1998. G. Applications of FRFT / LCT for optical system, radar system, and GRIN medium analysis [G1] L. M. Bernardo, ‘ABCD matrix formalism of fractional Fourier optics’, Optical Eng., vol. 35, no. 3, p 732-740, March 1996. [G2] S. A. Collins, ‘Lens-system diffraction integral written in terms of matrix optics’, J. Opt. Soc. Am., vol. 60, p. 1168-1177, Sep. 1970. [G3] A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, ‘Fractional transformations in op-tics’, Progress in Optics, vol. 38, Chapter 4, Elsevier, 1998. [G4] D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, ‘Graded-index fibers, Wigner distribution and the fractional Fourier transform’ Appl. Opt., vol. 33, p. 6188-6193, 1994. [G5] L. Yu, M. Huang, L. Wu, Y. Lu, W. Huang, M. Chen, and Z. Zhu, ‘Fractional Fourier transform and the elliptic gradient-index medium’, Opt. Commun., vol. 152, p 23-25, Jun. 1998. [G6] D. Mendlovic and H. M. Ozaktas, ‘Fractional Fourier transforms and their optical im-plementation: I’, J. Opt. Soc. Am. A, vol. 10, no. 9, p. 1875-1881, Sep. 1993. [G7] T. Alieva, V. Lopez, F. Agullo-Lopez and L. B. Almeida, ‘The fractional Fourier transform in optical propagation problems’, J. Mod. Optics, vol. 41, no. 5, p. 1045-1049, 1994. [G8] H. M. Ozaktas and D. Mendlovic, ‘Every Fourier optical system is equivalent to con-secutive fractional-Fourier-domain filtering’, Appl. Opt., vol. 35, N. 17, p. 3167-3170, Jun. 1996. [G9] P. Pellat-Finet and G. Bonnet, ‘Fractional order Fourier transform and Fourier optics’, Opt. Commun., vol. 111, p. 141-154, Sep. 1994. [G10] H. M. Ozaktas and D. Mendlovic, ‘Fractional Fourier optics’, J. Opt. Soc. Am. A., vol. 12, p. 743-751, 1995. [G11] A. Siegman, “Lasers”, Sec. 20.7, Mill Valley, Calif: University Science Books, 1986. [G12] M. J. Bastiaans, ‘The Wigner distribution applied to optical signals and systems’, Optics Communications, vol. 25, p. 26-30, 1978. [G13] M. J. Bastiaans, ‘Wigner distribution function and its application to first-order op-tics’, J. Opt. Soc. Am., vol. 69, p. 1710-1716, 1979. [G14] M. J. Bastiaans, ‘Propagation laws for the second-order moments of the Wigner dis-tribution function in first-order optical systems’, Optik, vol. 82, p. 173-181, 1989. [G15] M. J. Bastiaans, ‘Second-order moments of the Wigner distribution function in first-order optical systems’, Optik, vol. 88, p. 163-168, 1991. [G16] M. Nazarathy and J. Shamir, ‘First-order opticsa canonical operator representation: lossless systems’, J. Opt. Soc. Am., vol. 72, p. 356-364, 1982. [G17] J. C. Wood and D. T. Barry, ‘Linear signal synthesis using the Radon-Wigner trans-form’, IEEE Trans. Signal Processing, vol. 42, p. 2105-2111, 1994. [G18] D. Mendlovic, R. G. Doesch, A. W. Lohmann, Z. Zalevsky, and C. Ferreira, ‘Optical illustration of a varied fractional Fourier-transform order and the Radon-Wigner dis-play’, Appl. Opt., vol. 35, no. 20, p. 3925-3929, Jul. 1996. [G19] Y. Zhang, B. Y. Gu, B. Z. Dong, and G. Z. Yang, ‘Optical implementations of Ra-don-Wigner display for one-dimensional signals’, Opt. Lett., vol. 23, no. 14, p. 1126-1128, Jul. 1998. [G20] A. W. Lohmann and B. H. Soffer, ‘Relationship between the Radon-Wigner and the fractional Fourier transform’, J. Opt. Soc. Am. A, vol. 11, no. 6, p. 1798-1801, 1994. [G21] K. B. Wolf and G. Krotzsch, ‘Metaxial correction of fractional Fourier transforms’, J. Opt. Soc. Am. A, vol. 16, no. 4, p. 821-830, Apr. 1999. H. Applications of FRFT and LCT for filter design [H1] M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, ‘Optimal filter in fractional Fourier domains’, IEEE Trans. Signal Processing, vol. 45, no. 5, p 1129-1143, May 1997. [H2] Z. Zalevsky and D. Mendlovic, ‘Fractional Wiener filter’, Appl. Opt., vol. 35, no. 20, p. 3930-3936, Jul. 1996. [H3] B. Barshan, M. A. Kutay, H. M. Ozaktas, ‘Optimal filters with linear canonical trans-formations’, Opt. Commun., vol. 135, p. 32-36, 1997. [H4] L. L. Scharf and J. K. Thomas, ‘Wiener filters in canonical coordinates for transform coding, filtering, and quantizing’, IEEE Trans. Signal Processing, vol. 46, no. 3, p. 647-654, Mar. 1998. [H5] M. F. Erden and H. M. Ozaktas, ‘Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains’, J. Opt. Soc. Am. A., vol. 15, p. 1647-1657, no. 6, Jun. 1998. [H6] D. Mendlovic, Z. Zalevsky, A. W. Lohmann, and R. G. Dorsch, ‘Signal spatial-filtering using the localized fractional Fourier transform’, Opt. Commun., vol. 126, p. 14-18, May 1996. I. Fractional and canonical correlation [I1] D. Mendlovic, H. M. Zalevsky, and A. W. Lohmann, ‘Fractional correlation’, Appl. Opt., vol. 34, no. 2, p 303-309, Jan. 1995. [I2] A. W. Lohmann, Z. Zalevsky, and D. Mendlovic, ‘Synthesis of pattern recognition fil-ters for fractional Fourier processing’, Opt. Commun., vol. 128, p 199-204, Jul. 1996. [I3] A. W. Lohmann and D. Mendlovic, ‘Fractional joint transform correlator’, Appl. Opt., vol. 36, no. 29, p. 7402-7407, Oct. 1997. [I4] S. Granieri, R. Arizaga, and E. E. Sicre, ‘Optical correlation based on the fractional Fourier transform’, Appl. Opt., vol. 36, no. 26, p. 6636-6645, Sep. 1997. [I5] A. M. Almanasreh and M. G. Abushagur, ‘Fractional correlation based on the modified fractional order Fourier transform’, Opt. Eng., vol. 37, no. 1, p 175-184, Jan. 1998. [I6] M. A. Kutay and H. M. Ozaktas, ‘Optimal image restoration with the fractional Fourier transform’, J. Opt. Soc. Am. A, vol. 15, no. 4, p 825-833, Apr. 1998. [I7] D. Mendlovic, ‘Fractional triple correlation and its applications’, J. Opt. Soc. Am. A, vol. 15, no. 6, p. 1658-1661, Jun. 1998. J. Fractional and canonical convolution [J1] H. M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural, ‘Convolution, filtering, and multiplexing in fractional Fourier domains and their rotation to chirp and wavelet transform’, J. Opt. Soc. Am. A, vol. 11, no. 2, p. 547-559, Feb. 1994. [J2] L. B. Almeida, ‘Product and convolution theorems for the fractional Fourier transform’, IEEE Signal Processing Letters, vol. 4, no. 1, p. 15-17, Jan. 1997. [J3] A. I. Zayed, ‘A convolution and product theorem for the fractional Fourier transform’, IEEE Signal Processing Letters, vol. 5, no. 4, p. 101-103, Apr. 1998. K. Fractional / canonical Hilbert transform [K1] A. W. Lohmann, D. Mendlovic, and Z. Zalevsky, ‘Fractional Hilbert transform’, Opt. Lett., vol. 21, no. 4, p 281-283, Feb. 1996. [K2] A. I. Zayed, ‘Hilbert transform associated with the fractional Fourier transform’, IEEE Signal Processing Letters, vol. 5, no. 8, p. 206-208, Aug. 1998. [K3] C. C. Tseng and S. C. Pei, ‘Design and application of discrete-time fractional Hilbert transformer’, IEEE Trans. on Circuits and Systems, Part II : Analog and Digital Sig-nal Processing, vol. 47, no. 12, p. 1529-1533, Dec. 2000. . [K4] S. C. Pei and M. H. Yeh, ‘Discrete fractional Hilbert transform’, Proc. of IEEE Int'l Symp. on Circuits and Systems, vol. 4, p. 506-509, Jun. 1998. [K5] S. C. Pei and P. W. Wang, ‘Analytical design of digital nonrecursive maximally flat fractional Hilbert transformer’, Proc. of IEEE Int’l Symp. on Circuits and Systems, Orlando, vol. 3, p. 175-178, Jun. 1999. [K6] C. C. Tseng and S. C. Pei, ‘Discrete-time Hilbert transformer’, Proc. of IEEE Int’l Symp. on Circuits and Systems, Geneva, Switzerland, May 2000. [K7] A. W. Lohmann, J. Ojeda-Castañeda, and L. Diaz-Santana, ‘Fractional Hilbert trans-form: optical implementation for 1-D objects’, Opt. Mem. Neural Networks, vol. 5, p 131-135, 1996. [K8] A. W. Lohmann, E. Tepichin, and J. G. Ramirez, ‘Optical implementation of the frac-tional Hilbert transform for twodimensional objects’, Appl. Opt., vol. 36, p 6620-6626, 1997. [K9] J. A. Davis, D. E. McNamara, and D. M. Cottrell, ‘Analysis of the fractional Hilbert transform’, Appl. Opt., vol. 37, no. 29, p 6911-6913, Oct. 1998. L. Other applications of FRFT and LCT [L1] G. Z. Yang, B. Z. Dong, B. Y. Gu, J. Y. Zhuang, and O. K. Ersoy, ‘Gerchberg-Saxton and Yang-Gu algorithms for phase retrieval in a nonunitary transform system: a com-parison’, Appl. Opt., vol. 33, no. 2, p. 209-218, Jan. 1994. [L2] Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, ‘Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain’, Opt. Lett., vol. 21, no. 12, p. 342-344, Jun. 1996. [L3] B. Z. Dong, Y. Zhang, B. Y. Gu, and G. Z. Yang, ‘Numerical investigation of phase retrieval in a fractional Fourier transform’, J. Opt. Soc. Am. A, vol. 14, no. 10, p. 2709-2713, 1997. [L4] W. X. Cong, N, X. Chen, and B. Y. Gu, ‘Recursive algorithm for phase retrieval in the fractional Fourier transform domain’, Appl. Opt., vol. 37, no. 29, p 6906- 6910, Oct. 1998. [L5] Y. Zhang, B. Z. Dong, B. Y. Gu, and G. Z. Yang, ‘Beam shaping in the fractional Fourier transform domain’, J. Opt. Soc. Am. A, vol. 15, no. 5, p. 1114-1120, May 1998. [L6] S. Liu, L. Yu, and B. Zhu, ‘Optical image encryption by cascaded fractional Fourier transforms with random phase filtering’, Opt. Commun., vol. 187, p. 57-63, Jan. 2001. [L7] F. H. Kerr, ‘Namias’ fractional Fourier transforms on L2 and applications to differenti-al equations’, Journal of Mathematical Analysis and Applications, vol. 136, p. 404-418, 1988. [L8] I. S. Yetik, H. M. Ozaktas, B. Barshan, and L. Onural, ‘Perspective projections in the space-frequency plane and fractional Fourier transforms’, J. Opt. Soc. Am. A, vol. 17, no. 12, p. 2382-2390, Dec. 2000. [L9] A. Bultan, ‘A four-parameter atomic decomposition of chirplets’, IEEE Trans. Signal Processing, vol. 47, no. 3, p. 731-745, Mar. 1999. [L10] C. Mendlovic and A. W. Lohmann, ‘Space-bandwidth product adaption and its appli-cation to superresolution: fundamentals’, J. Opt. Soc. Am. A, vol. 14, no. 3, p. 558-562, Mar. 1997. M. Other operations related to FRFT and LCT [M1] Z. Zalevsky and D. Mendlovic, ‘Fractional Radon transform: definition’, Appl. Opt., vol. 35, no. 23, p. 4628-4631, Aug. 1996. [M2] D. Dragoman, ‘Fractional Fourier-related functions’, Opt. Commun., vol.128, p 91-98, July 1996. [M3] D. Dragoman and M. Dragoman, ‘Temporal implementation of Fourier-related trans-forms’, Opt. Commun., vol. 145, p 33-37, Jan. 1998. [M4] D. Mendlovic, Z. Zalevsky, D. Mas, J. Garcia, and C. Ferreira, ‘Fractional wavelet transform’, Appl. Opt., vol. 36, no. 20, p. 4801-4806, Jul. 1997. N. The transforms related to FRFT and LCT [N1] S. C. Pei and J. J. Ding, ‘Simplified fractional Fourier transforms’, J. Opt. Soc. Am. A, vol. 17, no. 12, p. 2355-2367, Dec., 2000. [N2] S. C. Pei and J. J. Ding, ‘Fractional, canonical, and simplified fractional cosine trans-forms’, to appear in ICASSP 2001. [N3] S. C. Pei and J. J. Ding, ‘Fractional, canonical, and simplified fractional cosine, sine and Hartley transforms’, submitted to IEEE Trans. Signal Processing. [N4] Y. Huang and B. Suter, ‘The fractional wave packet transform’, Multidimensional Systems and Signal Processing, vol. 9, p. 399-402, 1998. [N5] Y. Zhang, B. Y. Gu, B. Z. Dong, and G. Z. Yang, ‘A new kind of windowed fractional transforms’, Opt. Commun., vol. 152, p. 127-134, Jun. 1998. [N6] C. C. Shih, ‘Fractionalization of Fourier transform’, Opt. Commun., vol. 118, p. 495-498, Aug. 1995. [N7] S. Liu, J. Jiang, Y. Zhang, and J. Zhang, ‘Generalized fractional Fourier transforms’, J. Phys. A: Math. Gen., vol. 30, p. 973-981, 1997. [N8] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti, ‘A unified framework for the fractional Fourier transform’, IEEE Trans. Signal Processing., v. 46, n. 12, p 3206-3219, Dec. 1998. [N9] G. Cariolaro, T. Erseghe, P. Kraniauskas, and N. Laurenti, ‘Multiplicity of fractional Fourier transforms and their relationships’, IEEE Trans. Signal Processing, vol. 48, no. 1, p. 227-241, Jan. 2000. [N10] A. W. Lohmann, D. Mendlovic, Z. Zalevsky, and R. G. Dorsch, ‘Some important fractional transforms for signal processing’, Opt. Commun., vol. 125, p 18-20, Apr. 1996. [N11] S. Liu, J. Zhang, and Y. Zhang, ‘Properties of the fractionalization of a Fourier trans-form’, Opt. Commun., vol. 133, p. 50-54, Jan. 1997. [N12] Y. Zhang, B. Y. Gu, B. Z. Dong, G. Z. Yang, H. Ren, X. Zhang, and S. Liu, ‘Frac-tional Gabor transform’, Opt. Lett., vol. 22, no. 21, p. 1583-1585, Nov. 1997. O. Two-Dimensional FRFT and LCT [O1] G. B. Folland, “Harmonic Analysis in Phase Space”, the Annals of Math. Studies vol. 122, Princeton University Press, 1989. [O2] J. J. Ding and S. C. Pei, ‘2D affine generalized fractional Fourier transform’, IC-ASSP’99, vol. 6, p. 31813184, 1999. [O3] S. C. Pei and J. J. Ding, ‘Two-dimensional affine generalized fractional Fourier trans-form’, to appear in IEEE Trans. Signal Processing, Apr. 2001. [O4] A. Sahin, H. M. Ozaktas, and D. Mendlovic, ‘Optical implementation of two-dimensional fractional Fourier transforms and linear canonical transforms with arbi-trary parameters’, Appl. Opt., vol. 37, no. 11, p 2130-2141, Apr 1998. [O5] A. Sahin, M. A. Kutay, and H. M. Ozaktas, ‘Nonseparable two-dimensional fractional Fourier transform`, Appl. Opt., vol. 37, no. 23, p 5444-5453, Aug 1998. [O6] V. Namias, ‘Fractionalization of Hankel transforms’, J. Inst. Maths Applics, vol. 26, p. 187-197, 1980. [O7] L. Yu, W. Huang, M. Huang, Z. Zhu, X. Zeng, and W. Ji, ‘The LaguerreGaussian series representation of two-dimensional fractional Fourier transform’, J. Phys A: Math. Gen., vol. 31, p. 9353-9357, 1998. [O8] Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, ‘The ABCDBessel transformation’, Opt. Commun., vol. 147, p. 39-41, Feb. 1998. P. Discrete FRFT and LCT [P1] S. C. Pei and J. J. Ding, ‘Closed form discrete fractional and affine Fourier transforms’, IEEE Trans. Signal Processing, vol. 48, no. 5, p. 1338-1353, May 2000. [P2] S. C. Pei and M. H. Yeh, ‘Improved discrete fractional Fourier transform’, Opt. Lett., July 1997, p 1047-1049. [P3] S. C. Pei, C. C. Tseng, and M. H. Yeh, ‘Discrete fractional Hartley and Fourier trans-form’, IEEE Trans. on Circuits and Systems, II: Analog and Digital Signal Processing, vol. 45, no. 6, p 665-675, June 1998. [P4] S. C. Pei, M. H. Yeh, and C. C. Tseng, ‘Discrete fractional Fourier transform based on orthogonal projection’, IEEE Trans. Signal Processing., vol. 47, no. 5, p 1335-1348, May 1999. [P5] S. C. Pei and C. C. Tseng, ‘New discrete fractional Fourier transform based on con-strained eigendecomposition of DFT matrix by Lagrange multiplier method’, IC-ASSP’97 v. 5, p 3965-3968, 1997. [P6] B. Santhanam and J. H. McClellan, ‘The discrete rotational Fourier transform’, IEEE Trans. Signal Processing., vol. 42, p 994-998, Apr 1996. [P7] M. S. Richman and T. W. Parks, ‘Understanding discrete rotations’, ICASSP’97, vol. 3, p 2057-2060, 1997. [P8] S. C. Pei and M. H. Yeh, "Two-dimensional discrete fractional Fourier transform", Signal Processing, vol. 67, p 99-108, Feb. 1998. [P9] S. C. Pei, M. H. Yeh and T. L. Luo, “Fractional Fourier Series expansion for finite sig-nals and dual extension to discrete-time fractional Fourier transform”, IEEE Trans. Signal Processing, vol. 47, no. 10, p. 2883-2888, Oct. 1999. [P10] T. Alieva and A. Barbe, ‘Fractional Fourier and Radon-Wigner transforms of periodic signals’, Signal Processing, vol. 69, p. 183-189, 1998. [P11] O. Arikan, M. A. Kutay, H. M. Ozaktas, and O. K. Akdemir, ‘The discrete fractional Fourier transformation’, Proceedings of IEEE International Symposium on Time-Frequency and Time-Scale Analysis, p 205-207, 1996. Q. Others [Q1] M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions, with For-mula, Graphs and Mathematical Tables”, Dover Publication, New York, 1965. [Q2] M. R. Spiegel, “Mathematical Handbook of Formulas and Tables”, McGraw-Hill, 1990. [Q3] J. W. Goodman, “Introduction to Fourier Optics”, McGraw-Hill, 2nd ed., 1988. [Q4] S. G. Lipson and H. Lipson, “Optical Physics”, 2nd Ed., Cambridge U. Press, Cam-bridge, 1981, p 190-192. [Q5] J. T. Winthrop and C. R. Worthington, ‘Theory of Fresnel images. 1. Plane periodic objects in monochromatic light’, J. Opt. Soc. Am., vol. 55, p 373-381, 1965. [Q6] A. W. Lohmann, ‘An array illuminator based on the Talbot effect’, Optik (Stuttgart), vol. 79, p 41-45, 1988. [Q7] J. Leger and G. J. Swanson, ‘Efficient array illuminator using binary-optics phase plates as fractional Talbot planes’, Opt. Lett., vol. 15, p 288-290, 1990. [Q8] G. W. Wronell, “Signal Processing with Fractals”, Prentice-Hall, Upper Saddle River, New Jersey, 1996. [Q9] M. L. Curtis, “Matrix Groups”, 2nd ed., Springer-Verlag, 1979. [Q10] J. J. Ding, “Derivation and Properties of Orthogonal transform”, Master Thesis, Na-tional Taiwan University, 1997. [Q11] M. H. Yeh, “Research of Fractional Signal Transforms”, Chap. 8, Ph.D. Thesis, Na-tional Taiwan University, 1997. [Q12] G. Mandyam and N. Ahmed, ‘The discrete Laguerre transform: derivation and appli-cations’, IEEE Trans. Signal Processing., vol. 44, no. 12, p. 2925-2931, Dec. 1996.
|