跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 13:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐茂傑
研究生(外文):Mao-Chieh Hsu
論文名稱:低操作電壓與多波段長波長紅外線光偵測器之研製
論文名稱(外文):Development of low-bias and multicolor photodetectors with supelattices structures
指導教授:管傑雄管傑雄引用關係
指導教授(外文):Chieh-Hsiung Kuan
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:133
中文關鍵詞:紅外線光偵測器量子井超晶格子間帶躍遷迷你能帶超晶格紅外線光偵測器量子井紅外線光偵測器
外文關鍵詞:infraredphotodetectorquantum wellsuperlatticeintersubband transitionminibandsuperlattice infrared photodetectorquantum well infrared photodetector
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討利用量子井 (quantum well) 或超晶格 (superlattice) 結構的子間帶躍遷 (intersubband transition)研製長波長紅外線偵測器的成果。
我們首先研究了最常見的束縛態至連續態躍遷的量子井紅外線偵測器中的電流-電壓及雜訊電流特性,我們發現在低偏壓的情況下, 暗電流可視為由量子井結構中能障區域引起的飄移電流。在中偏壓之下,雖然暗電流仍可視為飄移電流 但此時的電子濃度會隨偏壓增加且約和電壓成正比,從這些觀查我們對傳統應用在量子井紅外線偵測器 (QWIP) 飄移模型 ( drift current model) 做了修正 為設計偵測器時提供更可靠的理論參考。
除了量子井結構外我們也探討了利用超晶格結構來設計可低電壓操作或多波段操作的優點提出了幾個可行的設計,由於超晶格結構在相同的重覆周期下具有較薄的厚度 因此較為容易被製低偏壓操作的偵測器,但是由於超晶格結構的穿隧電流較大因此一般必須引入電流阻擋層的設計,我們對先前研究過的超晶格紅外線偵測器做了些改進,顯示超晶格紅外線偵測器可達到和量子井紅外線偵測器相當的偵測度且操作在較低的電壓和具較低的功率損耗。 我們所研制的偵測器偵測波段為 8-12 微米 (micrometer), 在77K 且偏壓為 0.1 伏特 時 峰值的 偵測度為 其響應度為 85mA/W。
在本研究中我們同時發現了阻檔層兩個新的功能: 它可用來控制超晶格紅外線偵測器的截止波長並使偵測器對操作電壓有選擇性。我們對這兩種特性進一步做了理論和實驗上的分析,最後利用了上述的結果我們設計了一個由兩極性相反的超晶格紅外線偵測器所組成的壓控多波長偵測器。藉由電壓控制 我們成功地示範了 5.5 、6.8 、8.5 和 10.8 微米四種不同的尖峰波長。 較傳統的設計 我們所提的設計具有較佳的波段控制性能且操作在較合理的電壓範圍。
本文中探討的相關物裡機制 也可用於其它子間帶躍遷的紅外線元件, 如 cascade laser。
Abstract
This thesis concerns with the studies on the design and characterization of the (5-12mm) infrared photodetector based on intersubband transitions in quantum well and superlattice structures.
The bound-to-continuum quantum well infrared photodetector is one of the most commonly used intersubband photodetectors. Our study on such a conventional B-C QWIP concentrates on its current-voltage and noise characteristics to provide the further understanding of the dark current mechanism. Under low and medium biases, the dark current is primarily due to the thermionic emission current. We consider the thermionic emission current as the drift current of the electron concentration in the barrier. The electron concentration in the barrier is found to increase with the increasing bias voltage. The voltage dependence of the carrier concentration can be attributed to that the electric field in the well lifts up the Fermi level and then leads to the increment of the barrier electron concentration, and the injection of electrons from the adjacent wells offers additional excess electrons to the barriers. A theoretical model that can well describe the current-voltage characteristics of the QWIP for the bias range before the threshold of the electron tunneling is presented in this study.
In addition to the study on the conventional QWIP, we also investigate the use of the superlattice structure for the designs of low-bias and multicolor infrared photodetectors, which are of great interest in many infrared applications. Due to the formation of miniband to facilitate the transportation of excited electrons, superlattice infrared photodetectors (SLIPs) are expected to operate at a relatively low bias voltage. We propose a novel superlattice infrared photodetector, which consists of a 15-period superlattice structure embedded between two thick barriers. One barrier serves as a current blocking barrier and the other one is adopted to redirect those photoelectrons emitted into the emitter. The peak wavelength detectivity is at 77K and 0.1V with a responsivity of 85mA/W. In comparison with a 30-period QWIP, the SLIP can achieve a comparable detectivity but with lower power consumption.
In addition to the advantage of the low power consumption, we also found our SLIP exhibits voltage-tunable and polarity-selective photoresponsivity. The voltage tunable and polarity selective photoresponsivity was also found in a SLIP designed with a single blocking barrier. We experimentally and theoretically study the photoresponse under different bias polarities and bias voltages in the single-barrier SLIP. Under forward biases, the photoresponse is primarily due to photoemission of the electrons via the intersubband transitions at the superlattice layer. However, under reverse biases, because the injected electrons from the collector into SL are prevented by the blocking barrier, the photoexcited carriers generated at the SL but emitted toward the emitter make no significant contribution on the photoresponse. The photoresponse under reverse biases is found to be contributed from the free-carrier photoemission at the collector contact. Under both bias polarities, the voltage tunable response spectrum can be attributed to the energy filtering effect of the blocking barrier.
We have further applied these results to design and fabricated a voltage-controlled multicolor photodetector with two stacks of the single-barrier SLIP in the back-to-back configuration. A variable detection range with peak wavelength at 5.5 mm, 6.8 mm, 8.5 mm and 10.8 mm is achieved by changing the applied voltage at 45 K. Compared with the designs with the multiple quantum well structures, our alternative design provides the better switching between the two stacks and a lower switching voltage (<1.5V) for voltage-controlled multicolor detection.
Our designs may be applied to fabricate the infrared photodetectors for the low-bias and multicolor applications. The investigation on the underlying physical mechanisms may also have implications on other intersubband devices, such cascade lasers.
封面
Acknowledgement
Abstract
List of Figure Captions
List of Table Captions 
1. Introduction
1-1 Basics of quantum well infrared photodetector 
1-2 Characteristics description of photodetector 
1-3 Organization of the thesis
References
2. Sample Preparation and Experimental Setup   
2-1 Detector fabrication 
2-2 Absorption spectrum  
2-3 Response spectrum and absolute responsivity  
2-4 Current-voltage characteristics: dark current and background photocurrent
2-5 Noise measurement 
References
3. Noise and Bias Characteristics Before Electron Tunneling in Quantum Well Infrared Photodetector
3-1 Introduction
3-2 Experiments  
3-3 Theoretical model    
3-4 Discussion and analysis 
3-5 Summary
References 
4. Design and Characterization of Superlattice Infrared Photodetector Operating at Low Bias Voltage
4-1 Introduction 
4-2 Sample design 
4-3 Sample structure and processing
4-4 Dark current and background photocurrent
4-5 Responsivity measurements
4-6 Noise performance    
4-7 Quantum efficiency and detectivity
4-8 Comparison with QWIP 
4-9 Summary
Reference 
5. Voltage and Polarity Dependence of the Photoresponse Spectrum in Single-barrier Superlattice Infrared Photodetector
5-1 Introduction 
5-2 Sample description
5-3 Forward-bias photoresponse spectrum
5-3-1 Voltage dependence of photoresponse spectrum at forward biases 
5-3-2 Photoresponse model
5-4 Reverse- bias photoresponse spectrum
5-4-1 Voltage dependence of photoresponse spectrum at reverse biases
5-4-2 Free-carrier associated photoresponse
5-4-3 Effective barrier lowering and the tunneling effect
5-4-4 Photoresponse model for carrier associated photoresponse
5-4-5 Wavelength dependence of the free-carrier absorption quantum efficiency
5-5 Applications
5-5-1 Remote temperature sensing
5-5-2 Wavelength measurement of monochromatic infrared light source
5-6 Summary
References 
6. Multicolor Detection Utilizing Stacks of Superlattice in Back-to-Back Configuration  
6-1 Introduction 
6-2 Sample structure and experimental details
6-3 Current-voltage characteristics and equivalent circuit model
6-4 Characteristics of spectral photoresponse
6-5 Noise performance and detectivity
6-6 Summary
References 
7. Conclusion
Appendixes 
I. Calculation of Energy levels in quantum wells or Superlattices
II. Dipole selection rule of intersubband transition
References for Appendixes
chapter 1
[1] For example, John Lester Miller , "Principles of infrared technology: a practical guide to the state of art ," Chapman and Hall, New York (1994).
[2] For example, A P Davis and A H Lettington in " Application of Thermal Imaging ," Edited by S. G. Burnay, T. L. Williams, and C. H. Jones, ch1, IOP publishing Ltd (1988).
[3] J.D. Vincient, "Fundamental of Infrared Photodetector Operation and Testing" , Wiley, New York ( 1990).
[4] M.O. Manasreh and G.J. Brown, in "Semiconductor Quantum Wells and Superlattice for Long-wavelength Infrared photodetector", edited by M.O Manasreh, ch1, Artech House, Boston (1993).
[5] L.C. West and S.J. Eglash, Appl. Phys. Lett. 46, 1156 (1983).
[6] For a review, see B. F. Levine, J. Appl. Phys. 74, R1 (1993).
[7] S. D. Gunapala et al., Proc. SPIE 3061, 722 (1997).
[8] H.C. Lui, in Semiconductors and Semimetals 62, p 169, New York Academic (1999).
[9] K. K. Choi, M. Dutta, P.G. Newman, M. L. Saunders, and G. L. Iafrard, Apll. Phys. Lett. 57, 1384 (1990).
[10] C.J .Chen, K.K. Choi, M.Z. Tidrow, and D.C. Tsui, Appl. Phys. Lett. 68, 1446 (1996).
[11] K.K. Choi, in The Physics of Quantum well Infrared Photodetectors (1997).
[12] M. Ershov, H. C. Liu, M. Buchanan, Z. R. Wasilewski, and V. Ryzhii, Appl. Phys. Lett. 70, 414 (1997).
[13] Eustace. L. Dereniak, and Devon G. Corwe, Optical Radation Detectors, ch4, Wiley, New York, (1984).
chpater 6
[1] Walter R. Dyer, Electrochemical society Proceedings 99-22, 425(1999).
[2] R.M. Spitzberg, Optical Engineering 33, 2419 (1994).
[3] C. J. Chen, K. K. Choi, W. H. Chang and D. C. Tsui, Appl. Phys. Lett. 72, 5 (1998).
[4] Koch, A., Gornik, E, Abstreiter, G. Bohm, G., M. wlther and G. Weimann, Appl. Phys, Lett. 60, 2001 (1992).
[5] Sarath D. Gunapala, Sumith V. Bandara, A. Singh, John K. Liu, Sir B. Rafol, E. M. Luong, Jason M. Mumolo, Nhan Q. Tran, David Z.-Y. Ting, J. D. Vincent, Craig A. Shott, J. Long, and Paul D. LeVan, IEEE Transaction on Electron Devices 47, 963 (2000).
[6] I. Grave, A. Shakouri, N. Kuze and A. Yariv, Appl. Phys. Lett. 60, 2362 (1992).
[7] H.C. Liu, Jianmeng Li, J.R. Thompson, Z.R. Wasilewski, M. Buchanan, and J.G. Simmins, IEEE Electron Devices Lett. 14, 566 (1993).
[8] K. L. Tsai, C. P. Lee, J.S. Tsang and H.R. Chen, Electronics Lett. 30, 1352 (1994.).
[9] M. Martinet, F. Luc, E, Rosencher, Ph. Bois, and S. Delaitre, Appl. Phys. Lett. 60, 895 (1992).
[10] Jung-Chi Chiang, and Sheng S. Li; M. Z. Tidrow; P. Ho, M. Tsai and C. P. Lee, Appl. Phys. Lett.. 69, 2412 (1996).
chApter 2
[1] Grant R. Fowles, in " Introduction to Modern Optics," 2n Ed., ch3, Rineheart and Winston. Inc, (1975).
[2] Eustace L. dereniak and Devon G. Crown, in " Optical Radiation Detectors", ch2, John Wiley and Sons (1984).
[3] William J. Mooney, in "Optoelectronic Devices and Principles", ch8, Prentice-Hall (1991).
[4] C.D. Motchenbaher and J.A. Connelly, in " Low-Noise Electronic System Design", ch2, John Wiley and Sons(1993).
[5] Chun-Yu Chen and Chieh-Hsiung Kuan, IEEE transactions on instrumentation and measurement 60, 77 (2000).
chapter 3
[1] B.F. Levine et al, Appl. Phys. Lett. 56, 851 (1990).
[2] Andersson J Y and Lundquivst L, Appl. Phys. Lett. 59 857 (1991).
[3] R.L. Whitney, K.F. Cuff, and F.W. Adams, in Semiconductor quantum wells and superlattices for long-wavelength infrared detectors, Artech house, MA, 1993, ch3
[4] B.F. Levine, J. Appl. Phys. 74, R1 (1993).
[5] K.K. Choi, in The Physics of Quantum well Infrared Photodetectors (1997).
[6] Y. Fu, Ning Li, M. Karlsteen, and M. Willander, Na Li, W. L. Xu, W. Lu, and S. C. Shen, J. Appl. Phys. 87, 511( 2000).
[7] Rose A Concepts in Photoconductivity and Applied Problems, Interscience, New York (1963).
[8] W.A. Beck, Appl. Phys. Lett. 63, 3589 (1993).
[9] B. Xing, H.C. Lui, P.H. Wilson, M.Buchanan, Z. R. Waslewski, and J.G. Simmons, J.Appl. Phys 76,1889 (1994).
[10] R.L. Whitney, K.F. Cuff, and F.W. Adams, in Semiconductor quantum wells and superlattices for long-wavelength infrared detectors, ch3, Artech house, MA (1993).
[11] C.Y. Chen, and C.H. Kuan, IEEE Transactions on Instrumentation and Measurement 49, 77 (2000).
[12] For example, G. Sarusi, S. D. Gunapala, J. S. Park and B. F. Levine, J. Appl. Phys. 76, 6001(1994).
[13] C. H. Chu, C. I. Hung, Y. H. Wang, and M. P. Houng, IEEE Photonics Technology Lett. 9, 1262 (1997).
[14] For example, S. L. Chuang in Physics of Optoelectronics devices, ch4, John Wiley & sons, New York (1995).
[15] L. Thibaudeau, P. Bois, and J.Y. Duboz, J. Appl. Phys.79, 446 (1996).
[16] C. Mermelstein, H. Schneider, A. Sa''ar, C. Schonbein, M. Walther, and G. Bihlmann, Appl. Phys. Lett. 71, 2012 (1997).
[17] Blakemore J S, J. Appl. Phys. 53 123 (1982).
[18] W.C. Liu, J. Materials Science 25 1765 (1990).
[19] Swaminathan V and Macrander A T Materials Aspects of GaAs and InP Based Structure, pp. 255-261, Prentice Hall, New Jersey (1991).
chapter 4
[1] B.F. Levine et al, Appl. Phys. Lett. 56, 851 (1990).
[2] Andersson J Y and Lundquivst L, Appl. Phys. Lett. 59 857 (1991).
[3] R.L. Whitney, K.F. Cuff, and F.W. Adams, in Semiconductor quantum wells and superlattices for long-wavelength infrared detectors, Artech house, MA, 1993, ch3
[4] B.F. Levine, J. Appl. Phys. 74, R1 (1993).
[5] K.K. Choi, in The Physics of Quantum well Infrared Photodetectors (1997).
[6] Y. Fu, Ning Li, M. Karlsteen, and M. Willander, Na Li, W. L. Xu, W. Lu, and S. C. Shen, J. Appl. Phys. 87, 511( 2000).
[7] Rose A Concepts in Photoconductivity and Applied Problems, Interscience, New York (1963).
[8] W.A. Beck, Appl. Phys. Lett. 63, 3589 (1993).
[9] B. Xing, H.C. Lui, P.H. Wilson, M.Buchanan, Z. R. Waslewski, and J.G. Simmons, J.Appl. Phys 76,1889 (1994).
[10] R.L. Whitney, K.F. Cuff, and F.W. Adams, in Semiconductor quantum wells and superlattices for long-wavelength infrared detectors, ch3, Artech house, MA (1993).
[11] C.Y. Chen, and C.H. Kuan, IEEE Transactions on Instrumentation and Measurement 49, 77 (2000).
[12] For example, G. Sarusi, S. D. Gunapala, J. S. Park and B. F. Levine, J. Appl. Phys. 76, 6001(1994).
[13] C. H. Chu, C. I. Hung, Y. H. Wang, and M. P. Houng, IEEE Photonics Technology Lett. 9, 1262 (1997).
[14] For example, S. L. Chuang in Physics of Optoelectronics devices, ch4, John Wiley & sons, New York (1995).
for chapter 5
[1] Jacques I. Pankove, "Optical process in semiconductors," Dover publication . Inc, New York (1975).
[2] B.K. Ridley, "Quantum processes in Semiconductors", Ch. 5, Oxford, New York, (1988).
[3] B-Y Tsaur, M.M. Weeks, R. Tribiano, P.W. Pellegrini, and T.-R. Yew, IEEE Electron Dev. Lett. 9, 650 (1988).
[4] T.Y. Lin and J.M. Iannellu, Appl. Lett. 56, 2013(1990).
[5] T.Y. Lin, J.S. Park, S.D. Gunapala, E. W. Jones, and H. M. Del Castollo, IEEE Electron Dev. Lett. 15, 103 (1994).
[5] For example, K.K. Choi, in The Physics of Quantum well Infrared Photodetectors, p. 54 and p.93, World Scientific, Singapore (1997).
[6] A.G. Perera, H. X. Yuan, and M. H. Francombe, J. Appl. Phys. 77, 915 (1995).
[6] M. Helm, W. Hilber, and F. Fromherz, Phys. Rev. B48, 1601 (1993).
[7] M. Helm, in Intersubband Transitions in Quantum Wells: Physics and Device Application I, Edited by H.C. Lui and Federico Capasso, Semiconductors and Semimetals 62, 73(2000).
[8] L. Thibaudeau, P. Bois, and J. Y. Duboz, J. Appl. Phys. 79, 446(1996).
[9] J. J. Sakurai, in Modern Quantum Mechanics, p87,Benjamin (1985).
[10] Application of Thermal Imaging , Edited by S. G. Burnay, T. L. Williams, and C. H. Jones, ch2, IOP publishing Ltd, (1988).
[11] R.M. Spitzberg, Optical Engineering 33, 2419 (1994).
[12] C. J. Chen, K. K. Choi, W. H. Chang and D. C. Tsui, Appl. Phys. Lett. 72, 5 (1998).
[13] J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264, 553, (1994).
[15] L. Thibaudeau, P. Bois, and J.Y. Duboz, J. Appl. Phys.79, 446 (1996).
[16] C. Mermelstein, H. Schneider, A. Sa''ar, C. Schonbein, M. Walther, and G. Bihlmann, Appl. Phys. Lett. 71, 2012 (1997).
[17] Blakemore J S, J. Appl. Phys. 53 123 (1982).
[18] W.C. Liu, J. Materials Science 25 1765 (1990).
[19] Swaminathan V and Macrander A T Materials Aspects of GaAs and InP Based Structure, pp. 255-261, Prentice Hall, New Jersey (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top