跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/25 00:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳致豪
研究生(外文):Chih-Hao Chen
論文名稱:陽極氧化技術在金氧半太陽電池與超薄閘極氧化層之應用
論文名稱(外文):Application of Anodization Technique on MOS Solar Cell and Ultra-thin Gate Oxide
指導教授:胡振國胡振國引用關係
指導教授(外文):Jenn-Gwo Hwu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:86
中文關鍵詞:陽極氧化金氧半太陽電池超薄閘極氧化層液相沉積法陷阱穿遂電流後金屬退火處理界面缺陷密度飽和電流
外文關鍵詞:anodizationMOS solar cellultra-thin gate oxideLPDtrap assisted tunneling currentpost-metallization annealinginterface trap densitysaturation current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:1
在本論文中,我們將陽極氧化技術應用在金氧半太陽電池與超薄閘極氧化層的製造上。首先,我們發現利用陽極氧化在矽氟酸溶液內成長的氧化層,在太陽電池的應用上有不錯的特性。在主電極之間沉積一層半透明的薄鋁層,太陽電池的特性參數可以大幅提升。我們找出此種氧化層的厚度與太陽電池效率之間的關係,並推論電子在此種氧化層內的傳導機制與以液相沉積法成長的氧化層相似。我們也研究後金屬退火處理對太陽電池效能的影響,由於後金屬退火處理可以穩定氧化層內的電子陷阱數量與降低表面能階密度,因此在後金屬退火處理之後太陽電池的穩定度與效能都可明顯地提升。這裡所提出的方法極有潛力運用到實際的太陽電池製造上。
論文的第二部分,我們提出以陽極氧化的方法在加溫的純水中成長氧化層,然後再進行高溫熱退火處理,此種超薄閘極氧化層的特性於第三章中討論。當厚度大於2nm時,陽極氧化之氧化層比傳統快速熱系統生長的氧化層有較低的漏電流與較佳的崩潰特性,而且此種氧化層的飽和電流也比較低,另外,我們也發現飽和電流隨氧化層厚度而增加。而陽極氧化法在加溫與在室溫的純水中之氧化層成長速度與漏電流相差不多,且兩種方法都有極佳的均勻度。然而,若厚度超過2nm,則在加熱的純水中成長之氧化層其崩潰電場與耐壓時間可被更進一步地提升。我們認為氧化層特性的提升與被陷在氧化層內的負電荷數量多寡有關。
在第三章中,我們接著討論在稀釋的矽氟酸溶液中以陽極氧化法成長再經高溫熱退火處理之超薄閘極氧化層的特性。在稀釋的矽氟酸溶液中進行陽極氧化可以加速氧化層成長速度。然而,與在稀釋的矽氟酸溶液中成長比較,在純水中成長的氧化層仍然有比較好的品質。此外,我們發現漏電流越小的氧化層其飽和電流越大,似乎是氧化層品質越好其矽基底表面的特性越差。
最後,我們提出理論模型來說明電流-電壓曲線的行為。我們發現飽和電流會隨著表面缺陷密度的增加與少數載子之活期的減少而增加,且飽和電流也會隨著摻雜濃度而改變。

In this thesis, the anodization technique is applied to prepare the oxides of MOS solar cells and ultra-thin gate oxides. First, we find that the oxides prepared by anodization (ANO) in H2SiF6 solution are useful for MOS solar cells' application. After the inter-cathode semi-transparent thin Al films deposition, the solar cells' performance parameters can be improved. We study the relation between the oxide thickness and the efficiency and infer that the conduction mechanism of electrons in anodic oxide is similar to that in LPD oxide. We also study the effect of the post-metallization annealing (PMA) treatment on MOS solar cells' performance. It is believed that the PMA treatment can stabilize the number of the traps in ANO oxides and reduce the interface trap density. As a result, the reliability and the performance of solar cells can be improved apparently after the PMA treatment. This method proposed in this work is quite attractive for real solar cell application.
Secondly, the characteristics of ultra-thin gate oxides prepared by anodization in heated deionized water followed by high temperature annealing are discussed in chapter 3. It is found that the oxides prepared by anodization exhibit lower leakage current and higher breakdown endurance than those prepared by conventional rapid thermal oxidation (RTO) when the oxide thickness is greater than 2nm. Moreover, the saturation currents of anodic oxides are lower than those of RTO oxides and increase with the oxide thickness. For the oxides performed in heated and room temperature deionized water, the growth rate and the leakage current are comparable and thickness uniformity is excellent. However, when the oxide thickness is over 2nm, the breakdown field EBD and time-to-breakdown tBD can be improved further for oxide prepared in heated deionized water. It is believed that the oxide quality is dependent on the amount of negative charges pretrapped in oxide.
Then, the ultra-thin gate oxide prepared by anodization in dilute H2SiF6 solution followed by high temperature annealing is also investigated in chapter 3. Anodic oxidation in dilute H2SiF6 solution can enhance the growth rate. However, the oxides prepared in pure water still reveal better quality in comparison with those prepared in dilute H2SiF6 solution. In addition, we find that if the oxides have less leakage current, the saturation currents of those are greater. It appears that the better quality the oxides are, the poorer the silicon surface property is.
Finally, the theoretical description of I-V characteristics is given in chapter 4. We find that the saturation current increases with increasing interface trap density Dit and decreasing minority carrier lifetime τn. The saturation current can also be modified by the doping concentration NA.

Chapter 1 Introduction
1.1 About This Work
1.1.1 MOS Solar Cell
1.1.2 Ultra-thin Gate Oxide
1.2 The Anodic Oxidation and Rapid Thermal Systems
1.3 The Measuring Systems
Chapter 2 Study of Si MOS Solar Cells with Oxide Prepared by Anodization in H2SiF6 Solution
2.1 MOS Solar Cells with Oxide Prepared by ANO in H2SiF6
2.1.1 Introduction
2.1.2 Experimental
2.1.3 Results and Discussion
2.1.4 Summary
2.2 MOS Solar Cells with Oxide Prepared by ANO in H2O Followed by High Temperature Annealing
2.2.1 Experimental
2.2.2 Results and Discussion
2.3 Improvement in Solar Cells' Reliability by Post-metallization Annealing
2.3.1 Introduction
2.3.2 Experimental
2.3.3 Results and Discussion
2.3.4 Summary
Chapter 3 Study of Ultra-thin Gate Oxides Prepared by Anodization in H2O or H2SiF6
3.1 Characteristics of Ultra-thin Gate Oxides Prepared by ANO in H2O at Different Temperature
3.1.1 Introduction
3.1.2 Experimental
3.1.3 Results and Discussion
3.1.4 Summary
3.2 Characteristics of Ultra-thin Gate Oxides Prepared by ANO in Dilute H2SiF6 Solution
3.2.1 Introduction
3.2.2 Experimental
3.2.3 Results and Discussion
3.2.4 Summary
Chapter 4 Simulation of I-V Curve for MOS Devices with Ultra-thin Gate Oxide
4.1 Introduction
4.2 Theoretical Model
4.3 Results and Discussion
4.4 Summary
Chapter 5 Conclusion and Suggestion for Future Work
5.1 Conclusion
5.1.1 MOS Solar Cell
5.1.2 Ultra-thin Gate Oxide
5.2 Suggestion for Future Work
5.2.1 MOS Solar Cell
5.2.2 Ultra-thin Gate Oxide

[1] D. L. Pulfrey, IEEE Transactions on Electron Device, vol. 25, pp. 1308-1317 , 1978.
[2] J. Zhao, W. P. Altermatt, and M. A. Green, Appl. Phys. Lett., vol. 66, pp. 3636-3638, 1995.
[3] M. A. Green, J. Zhao, A. Wang, and S. R. Wenham, IEEE Transactions on Electron Device, vol. 46, pp. 1940-1947, 1999.
[4] A. Rohatgi, S. Narasimha, A. U. Ebong, and P. Doshi, IEEE Transactions on Electron Device, vol. 46, pp. 1970-1977, 1999.
[5] K. C. Lee, and J. G. Hwu, J. Vac. Sci. Technol. A, vol. 16, no. 4, pp. 2641-2645, 1998.
[6] M. J. Jeng and J. G. Hwu, J. Vac. Sci. Technol. A, vol. 15, no. 2, pp. 369-373, 1997.
[7] M. Y. Doghish and F. D. Ho, IEEE Transactions on Electron Device, vol. 39, pp. 2771-2780, 1992.
[8] M. Y. Doghish and F. D. Ho, IEEE Transactions on Electron Device, vol. 40, pp. 1446-1454, 1993.
[9] Y. Taur and T. H. Ning, Fundaments of Modern VLSI Devices, Cambridge, 1998.
[10] B. E. Weir, P. J. Silverman, et. al., IEDMS, pp.437-440, 1999.
[11] M. J. Jeng and J. G. Hwu, IEEE Electron Device Lett., vol. 17, no. 12, pp.575-577, 1996.
[12] A. H. M. Kamal, S. Nomura, and T. Endoh, J. Electrochem. Soc., vol. 141, no. 8, pp. 2227-2230, 1994.
[13] S. K. Ghandhi, VLSI Fabrication Principles: silicon and gaiiium arsenide, 1983.
[14] M. J. Sienko, and R. A. Plane, Chemistry, New York: McGraw-Hill, 1971.
[15] Y. P. Shen, and J. G. Hwu, IEEE Photon. Technol. Lett., vol. 8, pp. 420, 1996.
[16] J. Y. Lai, Master Thesis, Dept. of Electrical Engineering, N. T. U. 1998.
[17] K. C. Lee, and J. G. Hwu, IEEE Electron Device Lett., vol. 18, no. 11, pp. 565-567, 1997.
[18] C. C. Ting, Master Thesis, Dept. of Electrical Engineering, N. T. U. 2000.
[19] E. J. Charlson and J. C. Lien, J. Appl. Phys., vol. 46, p.3982, 1975.
[20] R. J. Stirn and Y.C. M. Yeh, Appl. Phys. Lett., vol. 27, p.95, 1975.
[21] J. Zhao, A. Wang, P. Campbell and M. A. Green, IEEE Transactions on Electron Device, vol. 46, no. 7, 1999.
[22] S. Narasimha and A. Rohatgi, Appl. Phys. Lett., vol. 72, p. 1872, 1998.
[23] E. Fabre, J. Michel and Y. Baudet, in Proc. 12th IEEE Phto. Spec. Conf., p. 904, 1976.
[24] S. Kar, in Proc. 12th IEEE Phto. Spec. Conf., p.922, 1976.
[25] International Technology Road map for semiconductors-Front-End Process, Swmiconduct. Ind. Assoc., 1999.
[26] K. F. Schuegraf and C. Hu, IEEE Trans. Electron Devices, vol. 41, pp. 761-767, 1994.
[27] Y. Shi, T. P. Ma, S. Prasad, and S. Dhanda, Electronics Device Lett., vol. 19, pp.391-393, 1998.
[28] S. Uchikoga, D. F. Lai, J. Robertson, and W. I. Milne, Appl. Phys. Lett., vol. 75, no. 5, pp.725-727, 1999.
[29] W. C. Lee, and C. Hu, Sym. on VLSI Tech., pp. 198-199, 2000.
[30] Y. C. Yeo, Q. Lu, W. C. Lee, T. J. King, C. Hu, X. Wang, X. Guo, and T.P. Ma, IEEE Electron Device Let., vol. 21, no. 11, pp. 540-542, 2000.
[31] A. Kazor, C. Jeynes, and I.W.Boyd, Appl. Phys. Lett., vol. 65, pp.1572, 1994.
[32] W. S. Lu and J. G. Hwu, IEEE Electron Device Lett., vol. 17, no. 4, pp. 172-174, 1996.
[33] M. J. Jeng, Ph.D. Thesis, Dept. of Electrical Engineering, N. T. U. 1996.
[34] P. Antogentti, D. Antomidis, R. Dutton, and W. Wolham, Process and Device Simulation for MOS-VLSI Circuits, NATO Series, Series E: Applied Sciences, no. 62, 1983.
[35] H. C. Card, Solid-State Electron., vol. 22, pp. 809-817, 1979.
[36] J. Snel, Solid-State Electron., vol. 24, pp. 135-139, 1981.
[37] S. T. Dunham, and J. D. Plummer, J. Appl. Phys., vol. 59, no. 7, pp.2541-2550, 1986.
[38] A. M. Lin, and R. W. Dutton, J. Electrochem. Soc., vol. 128, no. 5, pp. 1121-1130,1981.
[39] S. Mizuo and H. Higuchi, Japanese J. Appl. Phys., vol. 20, no. 4, pp. 739-744, 1981.
[40] R. B. Fair, IEDM, pp. 85-88, 1995.
[41] S. M. Sze, Physics of Semiconductor Devices, New York: Wiley, 1981.
[42] H. C. Card and E. R. Rhoderick, J. Phys. D: Appl. Phys., vol. 4, pp. 1589-1601, 1971.
[43] H. C. Card and E. R. Rhoderick, J. Phys. D: Appl. Phys., vol. 4, pp. 1602-1611, 1971.
[44] A. G. O'Neill, Solid-State Electron., vol. 29, pp. 305-310, 1986.
[45] H. C. Card, Solid-State Electron., vol. 20, pp. 971-976, 1977.
[46] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, New York: Wiley, 1991.
[47] L. B. Freeman and W. E. Dahlke, Solid-State Electron., vol. 13, pp. 1483-1503, 1970.
[48] A. Rohatgi and P. Rai-Choudhury, IEEE Transactions on Electron Device, vol. 31, pp. 596-601, 1984.
[49] L. Passari and E. Susi, , J. Appl. Phys., vol. 54, no. 7, pp. 3935-3937, 1983.
[50] P. Chattopadhyay and A. N. Daw, Solid-State Electron., vol. 29, pp. 555-560, 1986.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top