跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/03/03 02:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱俊昌
研究生(外文):Jiun-Chang Chiou
論文名稱:兩段式大角度Y形光波導之研製
論文名稱(外文):Two-Section Wide-Angle Y-Branch Optical Waveguides─Design and Fabrication
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:80
中文關鍵詞:Y形波導稜鏡積體光學
外文關鍵詞:Y-branchprismintegrated optics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Y形波導為功率分離器、合併器、調變器等積體光學元件的基本組成結構。當張角超過1º時,傳輸損耗大幅增加,所以張角必須限制在1°內,導致元件長度增加。為使元件面積縮小及光路佈局更具彈性,張角大於2°之大角度Y形波導因應而生。
傳統大角度Y形波導使用複雜設計及多種稜鏡折射率,雖在模擬上得到很好的傳輸效果,但實作時卻顯得困難重重。加上稜鏡放置在Y形波導分岔處,使得製程容忍度極低。
筆者提出新的兩段式大角度Y形波導,同時具有高傳輸率及高製程容忍度。模擬結果顯示傳輸率與目前發表過最好的結構相當,張角達20°時傳輸率大於93%,且製程容忍度從0.5µm大幅提升至6µm。設計參數並可調整以因應不同製程容忍度的需要。
同時利用實驗室現有設備在鈮酸鋰晶片上成功製作出兩段式大角度Y形波導,證實筆者設計確實可行。

We propose a novel concept─power splitting before phase compensation. By this concept, a novel symmertic single-mode Y-branch with two-section waveguides and a high-index butterfly-like microprism is proposed. The proposed waveguide has simpler design rules, larger fabrication tolerances, no truncation errors, and high transmitted power in comparision with other wide-angle Y-branch waveguides.
第一章導論……………………………………………..…...1
1-1積體光學簡介……………………………………………1
1-2研究動機…………………………………………………2
1-3內容概述…………………………………………………3
第二章大角度Y形波導……………………………….……5
2-1光束傳播法……………………………………………....5
2-2大角度彎曲波導…………………………………...…….6
2-3大角度Y形波導………………………………………....8
2-4傳統大角度Y形波導缺點……………………...…….....9
第三章兩段式大角度Y形波導…………………………...11
3-1稜鏡設計………………………………………...……...11
3-2分光小角度……………………………………………..12
3-3稜鏡重疊量……………………………………………..12
3-4稜鏡寬度……………………………...………………...13
3-5製程容忍度比較………………………………………..14
第四章鈮酸鋰元件製作…………………..……………….17
4-1鈮酸鋰晶體特性簡介……..…………..….….…………17
4-2鎳擴散式鈮酸鋰光波導特性簡介..…..….…….………18
4-3質子交換製程的特性...………………..….……………19
4-4鈮酸鋰元件製作流程…………………...….…………..19
第五章兩段式大角度Y形波導製作與量測……………...27
5-1製程限制………………………………………………..27
5-2製程考量………………………………………………..27
5-3製作流程………………………………………………..28
5-4製程注意事項………………………………………..29
5-5量測結果與討論………………………………………..30
第六章結論與未來展望…………………………………...32
6-1結論…………………………………………………..32
6-2未來展望……………………………………………….33
參考文獻……………………………………………………...34
附表…………………………………………………………...37
附圖…………………………………………………………...40
中英文名詞對照表…………………………………………...78

[1]T. Tamir, Integrated Optics, Springer, 1979.
[2]S. Kartalopoulos, Introduction to DWDM Technology, SPIE, 2000.
[3]H. Bissessur, C. Graver, O. Le Gouezigou, A. Vuong, A. Bodéré, A. Pinquier, and F. Brillouet, “WDM operation of a hybrid emitter integrating a wide- bandwidth on-chip mirror,” IEEE J. Select. Topics Quantum Electron., vol. 5, pp. 476-479, May 1999.
[4]N. Yoshimoto, Y. Shibata, S. Oku, S. Kondo, and Y. Noguchi, “High-input- power saturation properties of a polarization-insensitive semiconductor Mach- Zehnder interferometer gate switch for WDM applications,” IEEE Photon. Technol. Lett., vol. 10, pp.531-533, Apr. 1998.
[5]C. Dragone, “Crosstalk caused by fabrication errors in a generalised Mach- Zehnder interferometer,” Electron. Lett., vol. 33, pp. 1326-1327, July 1997.
[6]T. J. Cullen, H. N. Rourke, C. P. Chew, S. R. Baker,T. Bricheno,K. C. Byron, and A. Fielding, “Compact all-fibre wavelength drop and insert filter,” Electron. Lett., vol. 30, pp. 2160-2162, Dec. 1994.
[7]J. W. Lou. J. K. Andersen, J. C. Stocker, M. N. Islam, and D. A. Nolan, “Demultiplexing of arbitrarily polarized 100 Gb/s words using a twisted fiber nonlinear optical loop mirror,” CLEO’99, pp. 205-206.
[8]K. Takada, H. Yamada, and K. Okamoto, “320-channel multiplexer consisting of 100 GHz-spaced parent AWG and 10 GHz-spaced subsidiary AWGs,” Electron. Lett., vol. 35, pp. 824-826, Mar. 1999.
[9]H. Sakata, S. Takeuchi, “Grating-assisted directional coupler filters using AlGaAs/GaAs MQW waveguides,” IEEE Photon. Technol. Lett., vol. 3, Oct. 1991.
[10]Y. Shibata, S. Oku, Y. Kondo, T. Tamamura, and M. Naganuma, “Semiconductor monolithic wavelength selective router using a grating switch integrated with a directional coupler,” J. Lightwave Technol., vol. 14, pp. 1027-1032, June 1996.
[11]N. Kuzuta, K. Takakura, “Polarisation insensitive LiNbO3 optical devices with power splitting and switching functions,” Electron. Lett., vol. 27, pp. 157-158, Jan. 1991.
[12]N. Kuzuta, K. Takakura, “Polarisation insensitive LiNbO3 optical devices with power splitting and switching functions,” Electron. Lett., vol. 27, pp. 157-158, Jan. 1991.
[13]M. D. Feit and J. A. Fleck, “Light propagation in graded index optical fibers,” Appl. Opt., vol 17, pp. 3990-3998, 1978.
[14]R. Scarmozzino and R. M. Osgood, “Investigation of the Pade approximant -based wide-angle beam propagation method for accurate modeling of waveguide circuits,” J. Lightwave Technol., vol. 14, pp. 2813-2822, Dec. 1996.
[15]H. B. Lin, J. Y. Su, P. K. Wei, and W. S. Wang, “Design and application of very low-loss abrupt bends in optical waveguides,” IEEE J. Quantum Electron., vol. 30, pp. 2827—2835, Dec. 1994.
[16]T. Shiina, K. Shiraishi, and S. Kawakami, “Waveguide-bend configuration with low-loss characteristics,” Opt. Lett., vol. 11, pp. 736-738, Nov. 1986.
[17]L. M. Johnson and F. J. Leonberger, “Low-loss LiNbO3 waveguide bends with coherent coupling,” Opt. Lett., vol. 8, pp. 111-113, Feb. 1983.
[18]S. N. Radcliffe and T. P. Young, “New low-loss bend structures for high-density integrated optical switch arrays,” IEEE J. Select. Area. Commun., vol. 6, pp. 1169-1177, Aug. 1988.
[19]S. K. Korotky, E. A. J. Marcatili, J. J. Veselka, and R. H. Bosworth, “Greatly reduced losses for small-radius bends in Ti:LiNbO3 waveguides,” Appl. Phys. Lett., vol. 48, pp. 92-94, Jan. 1986.
[20]K. Hirayama and M. Koshiba, ”A new low-loss structure of abrupt bend in dielectric waveguides,” J. Lightwave Technol., vol. 10, pp. 563-569, May 1992.
[21]R. C. Lu, Y. P. Liao, H. B. Lin and W. S. Wang, “Design and fabrication of wide-angle abrupt bends on lithium niobate,” IEEE J. Select. Topics. Quantum Electron., vol. 2, pp. 215-220, June 1996.
[22]H. B. Lin, R. S. Cheng, and W. S. Wang, “Wide-angle low-loss single-mode symmetric y-junctions,” IEEE Photon. Technol. Lett., vol. 6, pp.825-827, July 1994.
[23]H. Hatami-Hanza, P. L. Chu, and M. J. Lederer, “A new low-loss wide-angle Y-branch configuration for optical dielectric slab waveguides,” IEEE Photon. Technol. Lett., vol. 6, pp. 528-530, Apr. 1994.
[24]J. M. Hsu and C. T. Lee, “Systematic design of novel wide-angle low-loss symmetric Y-junction waveguides,” IEEE J. Quantum Electron.,vol. 34, pp. 673-679, Apr. 1998.
[25]H. B. Lin, “A very low-loss wide-angle Y-branch with a composite diamond-like microprism,” IEEE J. Quantum Electron., vol. 37, pp. 231-236, Feb. 2001.
[26]S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys., vol. 50, no. 7, pp. 4599-4603, 1979.
[27]I. P. Kaminow and J. R. Carruthers, “Optical waveguiding layer in LiNbO3,” Appl. Phys. Lett., vol. 22, no. 7, pp. 326-328, 1973.
[28]Y. P. Liao, D. J. Chen, R. C. Lu, and W. S. Wang, “Nickel-diffused lithium niobate optical waveguide with process-dependent polarization,” IEEE Photon. Technol. Lett., vol. 8, pp. 548-550, Apr. 1996.
[29]J. J. Veselka and G. A. Bogert, “Low-insertion-loss channel waveguides in LiNbO3 fabricated by proton exchange,” Electron. Lett., vol. 23, no. 6, pp. 265-266, Mar. 1987.
[30]M. N. Armenise, “Fabrication techniques of lithium niobate waveguides,” IEE Proc. —J., vol. 135, pp. 85-91, Apr. 1988.
[31]A. Yi-Yan, “Index instability in proton exchanged LiNbO3 waveguides,” Appl. Phys. Lett., vol. 42, pp. 633-635, Apr. 1983.
[32]T. J. Wang and W. S. Wang, “Wide-angle Ni-diffused LiNbO3 abrupt waveguide bend with a proton-exchanged microprism,” IEEE J. Select. Topics. Quantum Electron., vol. 6, pp. 94-100, Jan. 2000.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top