跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/28 01:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳福安
研究生(外文):Fu An Wu
論文名稱:使用部分解離絕緣體上矽互補式金氧半動態臨界電壓技術具有快速標籤比對速度能力之新型低電壓內容可定址記憶體記憶單元
論文名稱(外文):A Novel Low-Voltage Content-Addressable-Memory Cell with a Fast Tag-Compare Capability Using PD SOI CMOS Dynamic-Threshold Voltage MOS Techniques
指導教授:郭正邦郭正邦引用關係
指導教授(外文):James B. Kuo
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:59
中文關鍵詞:互補式金氧半內容可定址記憶體動態臨界電壓金氧半低電壓部分解離絕緣體上矽標籤比對單元超大型積體電路
外文關鍵詞:CMOSCAMDTMOSlow voltagePDSOItag cellVLSI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用部分解離絕緣體上矽互補式金氧半動態臨限電壓技術提出了兩種適用於低電壓操作具有快速比對能力的內容可定址記憶體記憶單元。
在第二章中提出使用部分解離絕緣體上矽互補式金氧半動態臨界電壓技術擁有快速標籤比對能力之新型低電壓內容可定址記憶體記憶單元,其利用二個通過電晶體去動態控制記憶單元標籤比對部分之電晶體的基體電壓,在操作電壓為0.7伏特下具有快速的標籤比對能力。
第三章中探討部分解離絕緣體上矽元件之浮接基體效應對內容可定址記憶體記憶單元所造成的漏電現象,並提出使用一個二極體接法的P型部分解離絕緣體上矽金氧半元件來動態控制記憶單元讀寫電晶體基體電壓的方法,能有效地解決漏電問題。
在第四章中提出使用部分解離絕緣體上矽互補式金氧半動態臨界電壓技術擁有更快速標籤比對能力之新型低電壓內容可定址記憶體記憶單元,利用離絕緣體上矽技術的優勢來降低記憶單元標籤比對部分電路的最小操作電壓並利用一個輔助電晶體去動態控制標籤比對部分放電電晶體的基體電壓,在操作電壓為0.5伏特至1.2伏特時,其比對延遲時間均較第二章所提新型電路節省44%以上。
以上所提之電路均由二維半導體元件模擬程式MEDICI加以驗證。

This thesis reports two low-voltage Content-Addressable- Memory (CAM) Cells with a fast tag-compare capability using partially depleted (PD) SOI CMOS dynamic-threshold (DTMOS) techniques.
In chapter 2, this thesis reports a novel low-voltage Content- Addressable-Memory Cell with a fast tag-compare capability using partially depleted SOI CMOS dynamic-threshold techniques. With two auxiliary pass transistors to dynamically control the bodies of transistors in the tag-compare portion of CAM cell, this SOI CAM cell has a fast tag-compare capability at low supply voltage of 0.7 V.
In chapter 3, this thesis presents the leakage current of the CAM cell due to the floating-body effect of the PD SOI device and reports an approach using a p-type PD SOI MOS device with diode connections to dynamically control the bodies of access transistors of the CAM cell. Using this approach the leakage current can be eliminated effectively.
In chapter 4, this thesis reports a novel low-voltage Content- Addressable-Memory Cell with a faster tag-compare capability using partially depleted SOI CMOS dynamic-threshold techniques. Using the advantage of the SOI techniques to decrease the operation voltage of the tag-compare portion of the CAM cell and using an auxiliary transistor to dynamically control the body of the discharge transistor of the CAM cell, the delay time of tag-compare can be reduced to the 44% delay time of the circuit reported in chapter 2 at 0.5-1.2 V supply voltage.
The above-mentioned circuits are verified by the 2D MEDICI simulation program results.

目錄
第一章導論 ................................................1
1.1 簡介 ...............................................1
1.2 絕緣體上矽金氧半元件 ...............................2
1.3 動態臨界電壓金氧半技術 .............................4
1.4 本論文目標 .........................................6
第二章使用部分解離絕緣體上矽互補式金氧半動態臨界電壓技術具有
新型低電壓內容可定址記憶體記憶單元 ..................6
2.1 簡介 ................................................8
2.2 內容可定址記憶體記憶單元的基本架構 ..................10
2.3 新型低電壓絕緣體上矽內容可定址記憶體記憶單元 ........11
2.4 效能與討論 ..........................................14
2.5 結論 ................................................23
第三章部分解離絕緣體上矽之浮動基體效應在內容可定址記憶體記憶
單元所造成的漏電問題 ............................... 24
3.1 簡介 ................................................24
3.2 部分解離絕緣體上矽之浮動基體效應在內容可定址記憶體記憶
單元的漏電現象 ......................................27
3.3 漏電流問題之解決與討論 ..............................34
3.4 結論 ................................................38
第四章適用於低電壓操作具有更快速標籤比對能力之新型絕緣體上矽
內容可定址記憶體記憶單元 ............................39
4.1 簡介 ................................................39
4.2 傳統九個電晶體的內容可定址記憶體記憶單元 ............40
4.3 新型十一個個電晶體的內容可定址記憶體記憶單元 ........42
4.4 結論 ................................................51
第五章 總結 ..................................................53
參考文獻 .....................................................55

第一章
[1]A. Bellaouar and M. I. Elmasry, “Low-power Digital VLSI Design: Circuits and Systems, “ Kluwer, 1996
[2]A. P. Chandrakasan and R. W. Brodersen, “Minimizing Power Consumption in Digital CMOS Circuits.” IEEE Proceeding, 83(4), 498-523, 1995
[3]K. Shimohigashi and K. Seki, “Low-Voltage ULSI Design,” IEEE J. Solid-State Circuits, Vol. 28, No. 4, pp. 408-413, 1993
[4]J. B. Kuo and K. W. Su, “CMOS VLSI Engineering: Silicon-on-Insulator (SOI),” Kluwer: 1998.
[5]A. J. Auberton-Herve, “SOI Technologies Applications: Trends in VLSI,“ IEEE International SOI Conference Dig., 149-150(1990)
[6]D. Feijoo, A. P. Mills, A. R. Kortan, J. B. Sapjeta, C. M. Hsieh and G. E. Carver, “Comparative Materials Characterization of SOI Wafer Produced by Competing Technologies,” IEEE International SOI Conference Dig., 38-39(1993).
[7]K. Kumagai, T. Yamada, H. Iwaki, H. Noakamura, H. Onishi, Y. Matsubara, K. Imai and S. Kurosawa, “A New SRAM Cell Design using 0.35um CMOS/SIMOS Techenology,” SOI Conf. Dig., pp.174-175, 1997
[8]F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu, “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI,” IEEE Trans. Electron Device, 44(3), 414-422(1997)
[9]I. Y. Chung, Y. J. Park and H. S. Min, “A New SOI Inverter Using Dynamic Threshold for Low-Power Application,” IEEE Electron Device Lett., 18(6), 372-274(1997).
[10]F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, C. Hu, “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation,” IEEE Electron Device Lett. vol. 15, no. 12, Dec. 1994, pp. 510-513.
第二章
[1]T euvo Kohonen, “Content-Addressable Memories”, Berlin; New York : Springer-Verlag, 1980
[2]J. B. Kuo and J. H. Lou, Low-Voltage CMOS VLSI Circuits. New York: Wiley, 1999.
[3]H. Kadota, J. Miyake, Y. Nishimichi, H. Kudoh, and K. Kagawa, “An 8-kbit content-addressable and reentrant memory,” IEEE J. Solid-State Circuits, vol. SC-20, pp. 951-957, May 1985.
[4]F. Assaderaghi, D. Sinitsky, S. A. Parke, J. Bokor, P. K. Ko, and C. Hu, “Dynamic Threshold-Voltage MOSFET (DTMOS) for Ultra-Low Voltage VLSI,” IEEE Trans. Electron Device, vol. 44, pp. 414-422, Mar. 1997.
[5]N. Lindert, T. Sugii, S. Tang, and C. Hu, “Dynamic Threshold Pass-Transistor Logic for Improved Delay at Low Power Supply Voltage VLSI,” IEEE J. Solid-State Circuits, vol. 34, pp.85-89, Jan. 1999.
[6]I. Y. Chung, Y. J. Park and H. S. Min, “A New SOI Inverter Using Dynamic Threshold for Low-Power Applications,” IEEE Electron Device Lett., vol. 18, pp. 248-250, June 1997.
[7]MEDICI: Two-Dimensional Semiconductor Device Simulation. Palo Alto, CA: Technology Modeling Assoc., 1996.
[8]H. Kadota, J. Miyake, I. Okabayashi, T. Maeda, T. Okamoto, M. Nakajima, and K. Kagawa, “A 32-bit CMOS microprocessor with on-chip cashe and TLB.” IEEE J. Solid-State Circuits, vol. 22, pp. 800-807, May 1987.
[9]J. B. Kuo and S. C. Lin, “Compact MOS/bipolar charge-control models of PD SOI CMOS devices for VLSI circuit simulation─SOI-technology SPICE, “ in Proc. Eur. Solid-State Device Research Conf. (ESSDERC), Leuven, Belgium, 2000, pp. 480-483.
[10]Farhad Shafai, Kenneth J. Schultz, G. F. Randall Gibson, Armin G. Bluschke, David E. Somppi, “Fully Parallel 30-MHz, 2.5-Mb CAM”, IEEE J. Solid-State Circuits, vol. 33, no. 11, pp. 1690-1696, Nov. 1998.
[11]S. C. Liu, F. A. Wu, and J. B. Kuo, “A Novel Low-Voltage Content-Addressable-Memory (CAM) Cell with a Fast Tag-Compare Capability Using Partially Depleted (PD) SOI CMOS Dynamic-Threshold (DTMOS) Techniques”, IEEE J. Solid-State Circuits, vol. 36, no. 4, April 2001, pp. 712-716.
第三章
[1]H, Lu et al., “1-M bit SRAM on SIMOX material,” in Proc. IEEE Int. SOI Conf., 1993, pp. 182-183.
[2]G. G. Shahidi et al., “A Room Temperature 0.1 μm CMOS on SOI,” IEEE Trans. Electron Device, vol. 41, pp. 2405-2411, 1994.
[3]D. Suh and J. G. Fossum, “Dynamic Floating-Body Instabilities in Partially Depleted SOI CMOS Circuits,” in Tech. Dig., IEDM, 1994, pp. 661-664.
[4]J. Gautier and J. Y. C. Sun, “On the Transient Operation of Partially SOI NMOS-FET’s,” IEEE Electron Device Lett., vol. 16, no.11, pp. 497-499, 1995.
[5]F. Assaderaghi et al., “History dependence of nonfully depleted (NFD) digital SOI circuits,” in 1996 Symp. VLSI Technology, pp.122-123.
[6]A. Wei and D. A. Antoniadis, “Measurement of transient effects in SOI DRAM/SRAM access transistors,” IEEE Electron Device Lett., vol. 17, no.5, pp. 193-195, 1996.
[7]M. M. Pelella et al., “Low-voltage transient bipolar effect induced by dynamic floating-body charging in scaled PD/SOI MOSPET’s,” IEEE Electron Device Lett., vol. 17, no. 5, pp. 196-198, 1996.
[8]P. F. Lu et al., “Floating body effect in partially-depleted SOI CMOS circuits,” Int. Symp. Low Power Electronics and Design, Monterey, CA, Aug. 12-14, 1996, pp. 139-144.
[9]C. Vieri, I. Yang, A. Chandrakasan, and D. A. Antoniadis, “SOIAS: Dynamically variable threshold SOI with active substrate,” 1995 IEEE Symp. Low Power Electronics, pp. 86-87.
[10]W. Chen et al., “Suppression of the SOI floating-body effects by linked-body device structure,” 1996 Symp. VLSI Technology, pp. 92-93.
[11]J. B. Kuang, S. Ratanaphanyarant, M. J. Saccamango, Louis L.-C. Hsu, R. C. Flaker, L. F. Wagner, S.-F. Sanford Chu, and G. G. Shahidi, “SRAM Bitline Circuits on PD SOI: Advantages and Concerns,” IEEE J. Solid-State Circuits, vol. 32, no. 6, June 1997, pp. 837-844
第四章
[1]Neil H. E. Weste, and Kamran Eshraghian, “Principles of CMOS VLSI Design,” Addison-Wesley, 1994.
[2]S. C. Liu, F. A. Wu, and J. B. Kuo, “A Novel Low-Voltage Content-Addressable-Memory (CAM) Cell with a Fast Tag-Compare Capability Using Partially Depleted (PD) SOI CMOS Dynamic-Threshold (DTMOS) Techniques”, IEEE J. Solid-State Circuits, vol. 36, no. 4, April 2001, pp. 712-716.
[3]J. B. Kuang et al. “SRAM Bitline Circuits on PD SOI: Advantages and Concerns,” IEEE J. Solid-State Circuits, vol. 32, no. 6, June 1997, pp. 837-844
[4]J. M. Stern, P. A. Ivey, S. Davidson and S.N. Walker, “Silicon-on-Insulator (SOI): A High Performance ASIC Technology,” CICC Dig., pp. 9.2.1-4, 1992.
[5]F. Assaderaghi, S. Parke, D. Sinitsky, J. Bokor, P. K. Ko, C. Hu, “A Dynamic Threshold Voltage MOSFET (DTMOS) for Very Low Voltage Operation,” IEEE Electron Device Lett. vol. 15, no. 12, Dec. 1994, pp. 510-513.
[6]M. R. Casu, G. Masera, G. Piccinini, M. R. Roch, M. Zamboni, “Comparative Analysis of PD-SOI Active Body-Biasing Circuits,” IEEE Internation SOI Conf. Oct. 2000, pp. 94-95.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊