|
第一章 [1]J. T. Boyd, Integrated Optics - Devices and Applications, IEEE Press, 1991. [2]R. G. Hunsperger, Integrated Optics : Thoery and Technology, 3rd ed., Springer-Verlag, 1991. [3]H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1985. [4]I. Andonovic, and D. Uttamchandnni, Principles of Modern Optical Systems, chap. 10, Artech House, 1989. [5]R. S. Weis and T. K.Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys., vol. 37, no.4, pp.191-203, Aug. 1985. [6]A. M. Prokhorov and Yu Skuz''minov, Physics and chemistry of crystalline lithium niobate, The Adam Hilger series on Optics and Optoelectronics, 1990. [7] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of strip load outdiffusion guides on lithium niobate substrate,” Microwave and Optical Technol. Lett., vol. 5, no. 7, pp. 309-313, 1992. [8]A. Loni, G. Hay, R. M. De La Rue, and J. M. Winfield, “Proton-exchanged LiNbO3 waveguide: The effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions,” J. Lightwave Technol., vol. 7, no. 6, pp. 911-919, 1989. [9]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-fiber characteristics," Appl. Opt., vol. 19, no. 4, pp.591-597, Feb. 1980. [10]P. K. Wei and W. S. Wang, "Fabrication of lithium niobate optical channel waveguides by nickel indiffusion," Microwave Opt. Technol. Lett., vol. 7, no. 5, pp. 219-221, Apr. 1994. [11]W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, "Febrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, Sep. 1992. [12]K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “Highly efficient 40GHz bandwidth Ti-LiNbO3 optical modulator employing ridge structure,” IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993. [13]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electro-optic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999. [14]S. J. Al-Bader, "Application of etched grooves in integrated-optics channel isolation," IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996. [15]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave length modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986. [16]A. Sugita, K. Jingui, N. Takato, K. Katoh, and M. Kawachi, "Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch," IEEE Trans. IEICE E. vol. 73, pp. 105-108, 1990. [17]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995. [18]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995. [19]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994. 第二章 [1]D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed., Academic Press, New York, 1992. [2]A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983. [3]E. Yamashita, Analysis Methods for Electromagnetic Wave Problems, Artech House, 1990. [4]M. Koshiba, Optical Waveguide Theory by the Finite Element Method, KTK Scientific Publishers, 1992. [5]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995. [6]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995. [7]K. Niguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly-efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993. [8]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994. [9]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986 [10]I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E.H. Turner, "Lithium niobate ridge waveguide modulator," Appl. Phys. Lett., vol. 24, pp.622-624, 1974. [11]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp.544-546, 1975. [12]W.L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp1318-1380, 1995. [13]H. J. Lee and S. Y. Shin, "Lithium niobate ridge waveguides fabricated by wet etching," Electron. Lett., vol. 31, pp. 268-269, 1995. [14]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp.1126-1135,1988. [15]M. D. Feit, J. A. Fleck, and L. McCaughan, "Comparison of calculated and measured performance of diffused channel-waveguide couplers," J. Opt. Soc. Amer., vol.73, pp.1296-1304, 1983. [16]S. Fouchet, A. Carenco, C. Dagnet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Techol., LT-5, pp.700-708, 1987. [17]M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive index changes in Ti-diffused LiNbO3 optical waveguides," J. Appl. Phys., vol. 49, pp.4677-4682, 1978. [18]W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, "Diffusion in Ti:LiNbO3 planar and channel waveguides," J. Appl. Phys., vol. 50, pp.6175-6182, 1979. [19]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics," Appl. Opt., vol. 19, 591-597, 1980. [20]F. S. Chu and P. L. Liu, "Simulations of Ti:LiNbO3 waveguide modulators-a comparison of simulation techniques," J. Lightwave Technol., vol. 8, pp.1492-1496, 1990. [21]P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, "Simulation of refractive index profiles for titanium-indiffused lithium niobate channel waveguides," Fiber and Integrated Optics, vol. 15, pp. 135-147, 1996. [22]J. Ctyroky, M. Hofman, J. Janta, and J. Schrofel, ŗ-D analysis of LiNbO3 Ti channel waveguides and directional couplers," IEEE J. Quantum Electron., vol. QE-20, pp. 400-409, 1984. [23]M. S. Stern, "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. J, vol. 135, pp. 56-63, 1988. [24]C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol., vol. 12, pp.1926-1931, 1994. [25]M. S. Stern, "Rayleigh quotient solution of semivectorial field problems for waveguide with arbitrary index profiles," IEE Proc. J, vol. 138, pp. 185-190, 1991. [26]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, London: Cambridge University Press, pp. 550-554. [27]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994. [28]A. Jennings, Matrix Computation for Engineers and Scientists, New York: Wiley, 1977. [29]Alan Jennings, Matrix Computation for engineers and scientists. John Wily & Sons, 1977. 第三章 [1]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995. [2]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995. [3]K. Niguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly-efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993. [4]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994. [5]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986 [6]I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E.H. Turner, "Lithium niobate ridge waveguide modulator," Appl. Phys. Lett., vol. 24, pp.622-624, 1974. [7]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp.544-546, 1975. [8]W.L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp1318-1380, 1995. [9]H. J. Lee and S. Y. Shin, "Lithium niobate ridge waveguides fabricated by wet etching," Electron. Lett., vol. 31, pp. 268-269, 1995. [10]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: : a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp.1126-1135,1988. [11]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics," Appl. Opt., vol. 19, 591-597, 1980. [12]J. F. Liu, Y. B. Lin, and W. S. Wang, "Fine adjustment of the coupling length of Ti-diffused LiNbO3 directional coupler with groove Structure," accepted by Mircowave and Optical Technology Letters and will be published in the June 5, 2001 issue. [13]J. F. Liu, Y. H. Wang, S. J. Chang, and W. S. Wang, "Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure," IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1204-1206, 2000. [14]J. F. Liu, Y. B. Lin, and W. S. Wang, "Ti:Er:LiNbO3 laser with ridge structure pumped at 980 and 1477 nm," accepted by CLEO/Pacific Rim 2001, The 4th Pacific Rim Conference on Lasers and Electro-Optics. 第四章 [1]J. F. Liu, Y. H. Wang, S. J. Chang, and W. S. Wang, "Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure," IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1204-1206, 2000. [2]J. F. Liu, Y. B. Lin, and W. S. Wang, "Fine adjustment of the coupling length of Ti-diffused LiNbO3 directional coupler with groove Structure," accepted by Mircowave and Optical Technology Letters and will be published in the June 5, 2001 issue. [3]R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett., vol. 27, no. 5, pp.415-417, 1991. [4]F. Caccavale, F. Segato, and I. Mansour, "A numerical study of erbium doped active LiNbO3 waveguides by the beam propagation method," J. Lightwave Technol., vol. 15, pp.2294-2300, 1997. [5]I. Baumann, R. Brinkmann, M Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron., vol. 32, no. 9, pp.1695-1706, 1996. [6]D. L. Veasey, J. Gray, J. Amin, and J.A. Aust, “Time-depedent modeling of Erbium-doped waveguide lasers in lituium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron., vol. 33, no.10, pp. 1647-1662, 1997. [7]D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO3 waveguide laser,” IEEE J. Quantum Electron., vol. 32, no.10, pp. 1833-1838, 1996. [8]D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “Dependence of Ti-diffused Er:LiNbO3 laser efficiency on waveguide fabrication parameters and pump wavelength,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1231-1235, 1997. [9]H. Suche, Greiner, W. Qiu, R. Wessel, and W. Sohler, “Integrated optical Ti:Er:LiNbO3 soliton source,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1642-1646, 1997. [10]M. S. Stern, "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. J., vol. 135, no. 1, pp. 56-63, 1988. [11]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994. [12]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, no. 6, pp. 1164-1168, 1995. 第五章 [1]M. Y. Papuchon, X. M. Combemale, D. B. Ostrawski, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett., vol. 27, pp. 289-291, 1975. [2]H. A. Haus, and C. G. Fonstad, "Three-waveguide couplers for improved sampling and filtering," IEEE J. Quantum Electron., vol. QE-17, pp. 2321-2325, 1981. [3]D. Yap, L. M. Johnson, and G. W. Pratt Jr, "Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter," Appl. Phys. Lett., vol. 44, pp. 583-585, 1984. [4]S. V. Burke, P. C. Kendall, S. Ritchie, M. J. Robertson, and P. N. Robson, "Analysis of rib waveguide coupler filters," IEE Proc. J, vol. 139, pp. 59-65, 1992. [5]B. A. Prasad and A. Selvarajan, "Method for cross-state tuning in a directional coupler with uniform Db switching," Electron. Lett., vol. 30, pp. 816-817, 1994. [6]H. Haga and S. Yamamoto, "Precise control of phase constant of optical guided-wave devices by loading Langmuir-Blodgett films," J. Lightwave Technol., vol. 6, pp. 1024-1027, 1988. [7]R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, "Coupling ratio control of polymeric waveguide couplers by bending," Electron . Lett . , vol. 28 , pp. 2135-2136, 1992. [8]S. S. Lee, M.C. Oh, Y. K. Jhee, and S. Y. Shin, "Y-cut LiNbO3 directional coupler with a self-aligned electrode," J. Lightwave Technol., vol. 12, pp. 872-875, 1994. [9]S. J. Al-Bader, "Application of etched grooves in integrated-optics channel isolation," IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996. [10]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave length modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986. [11]A. Sugita, K. Jingui, N. Takato, K. Katoh, and M. Kawachi, "Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch," IEEE Trans. IEICE E. vol. 73, pp. 105-108, 1990. [12]A. J. Weierholt, A. R. Mickelson, and S. Neegard, "Eigenmode analysis of symmetric parallel waveguide couplers," IEEE J. Quantum Electron., QE-23, pp. 1689-1692, 1987. [13]A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Techol., LT-3, pp. 1135-1146, 1985. [14]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994. [15]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp. 1126-1135, 1988.
|