跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/17 06:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉竹峰
研究生(外文):Ju-Feng Liu
論文名稱:脊型鈦擴散鈮酸鋰波導分析與研究
論文名稱(外文):Analysis and Application of T:LiNbO3 Ridge Waveguides
指導教授:王維新王維新引用關係
指導教授(外文):Way-Seen Wang
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:95
中文關鍵詞:脊型鈮酸鋰波導鈦擴散方向耦合器波導雷射
外文關鍵詞:RidgeLiNbO3waveguidetitanium indiffusiondirectional couplerwaveguide laser
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是研究脊型鈦擴散鈮酸鋰光波導之導光行為。所分析之導光行為包括各模態之等效折射率,其對應之光場分佈,以及波導耦合長度等。波導基板鈮酸鋰之非等向性,波導折射率依鈦離子擴散濃度變化關係及色散現象,皆已考慮於所分析之波導折射率模型中。數值計算採非等向性半向量偏極化有限差分法結合移值─倒數─冪次法和同時迭代法完成。再將分析結果應用於同軸式光激發摻鉺鈦擴散鈮酸鋰波導雷射和鈦擴散鈮酸鋰方向耦合器之設計上。藉由脊型結構降低同軸式光激發摻鉺鈦擴散鈮酸鋰波導雷射之有效激發面積,以降低臨界激發功率,數值結果顯示臨界激發功率最多可降40%。此外,本論文亦提出兩種溝槽結構用以精確調整鈦擴散鈮酸鋰方向耦合器之耦合長度。結果顯示耦合長度之調整量與溝槽之深度有關,縮短程度最大可達46%,拉長程度之百分比則更大。本論文所用之數值方法亦可輕易且有效地應用於任何直線光波導元件之可設計與分析,未來可進而發展成適合一般研究人員使用之良好軟體工具。
In this paper, Ti-diffused ridge LiNbO3 waveguides are analyzed to show the effects of the ridge on optical propagation characteristics, such as propagation index, electric field, and coupling length. An anisotropic semivectorial polarized finite difference method with a shift inverse power method and a simultaneous iteration scheme is used for the numerical calculation. The validity and accuracy of the calculated results by this method are assessed by comparing with those published. Waveguide devices with the ridge structure are then considered to provide design rules for the improvement of efficiency of Ti-diffused Er:LiNbO3 waveguide laser and the tuning of coupling length of directional coupler. By incorporating the ridge structure, the effective pump area of coaxially pumped Ti-diffused Er:LiNbO3 waveguide laser is decreased such that the threshold pump power of the laser is significantly lowered. The results show that the reduction of the threshold pump power can be as large as about 40%, while the slope efficiency is not obviously changed. Next, two kinds of groove structure for shortening and broadening the coupling lengths of Ti:diffused LiNbO3 directional couplers are presented. The coupling lengths as functions of the depth, width, and spacing of the grooves were numerically calculated. The results show that the maximum shortening of coupling length is up to 43%, and the maximum broadening is even larger depending on the groove depth. This method can be efficiently applied to the analysis of any longitudinally invariant waveguide devices.
第一章 緒論
1-1 積體光學簡介
1-2 鈮酸鋰晶體基本特性
1-3 脊型波導
1-4 研究動機
1-5 論文內容概述
第二章 鈦擴散鈮酸鋰通道波導折射率模型和理論分析
2-1 簡介
2-2 鈦擴散鈮酸鋰通道波導折射率模型
2-3 理論分析
2-4 數值方法
2-5 結論
第三章 脊型鈦擴散鈮酸鋰波導模擬結果
3-1脊型鈦擴散鈮酸鋰波導折射率模型
3-2模擬結果
3-3討論與應用
第四章 脊型同軸激發摻鉺鈦擴散鈮酸鋰波導雷射
4-1簡介
4-2理論分析4-3模擬結果和討論
4-4 結論
第五章 以脊型結構精確控制方向耦合器耦合長度
5-1簡介
5-2理論分析
5-3模擬結果和討論
5-4結論
第六章 總結與未來展望
6-1總結
6-2未來之展望
參考文獻
附表
附圖68
第一章
[1]J. T. Boyd, Integrated Optics - Devices and Applications, IEEE Press, 1991.
[2]R. G. Hunsperger, Integrated Optics : Thoery and Technology, 3rd ed., Springer-Verlag, 1991.
[3]H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits, McGraw-Hill, 1985.
[4]I. Andonovic, and D. Uttamchandnni, Principles of Modern Optical Systems, chap. 10, Artech House, 1989.
[5]R. S. Weis and T. K.Gaylord, "Lithium niobate: summary of physical properties and crystal structure," Appl. Phys., vol. 37, no.4, pp.191-203, Aug. 1985.
[6]A. M. Prokhorov and Yu Skuz''minov, Physics and chemistry of crystalline lithium niobate, The Adam Hilger series on Optics and Optoelectronics, 1990.
[7] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Wang, “Fabrication of strip load outdiffusion guides on lithium niobate substrate,” Microwave and Optical Technol. Lett., vol. 5, no. 7, pp. 309-313, 1992.
[8]A. Loni, G. Hay, R. M. De La Rue, and J. M. Winfield, “Proton-exchanged LiNbO3 waveguide: The effects of post-exchange annealing and buffered melts as determined by infrared spectroscopy, optical waveguide measurements, and hydrogen isotopic exchange reactions,” J. Lightwave Technol., vol. 7, no. 6, pp. 911-919, 1989.
[9]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-fiber characteristics," Appl. Opt., vol. 19, no. 4, pp.591-597, Feb. 1980.
[10]P. K. Wei and W. S. Wang, "Fabrication of lithium niobate optical channel waveguides by nickel indiffusion," Microwave Opt. Technol. Lett., vol. 7, no. 5, pp. 219-221, Apr. 1994.
[11]W. M. Young, M. M. Fejer, M. J. F. Digonnet, A. F. Marshall, and R. S. Feigelson, "Febrication, characterization and index profile modeling of high-damage resistance Zn-diffused waveguides in congruent and MgO:lithium niobate," J. Lightwave Technol., vol. 10, no. 9, pp. 1238-1246, Sep. 1992.
[12]K. Noguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, “Highly efficient 40GHz bandwidth Ti-LiNbO3 optical modulator employing ridge structure,” IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993.
[13]S. J. Chang, C. L. Tsai, Y. B. Lin, J. F. Liu, and W. S. Wang, “Improved electro-optic modulator with ridge structure in x-cut LiNbO3,” J. Lightwave Technol., vol. 17, no. 5, pp. 843-847, 1999.
[14]S. J. Al-Bader, "Application of etched grooves in integrated-optics channel isolation," IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996.
[15]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave length modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986.
[16]A. Sugita, K. Jingui, N. Takato, K. Katoh, and M. Kawachi, "Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch," IEEE Trans. IEICE E. vol. 73, pp. 105-108, 1990.
[17]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995.
[18]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by
proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995.
[19]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994.
第二章
[1]D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed., Academic Press, New York, 1992.
[2]A. W. Snyder and J. D. Love, Optical Waveguide Theory, Chapman and Hall, 1983.
[3]E. Yamashita, Analysis Methods for Electromagnetic Wave Problems, Artech House, 1990.
[4]M. Koshiba, Optical Waveguide Theory by the Finite Element Method, KTK Scientific Publishers, 1992.
[5]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995.
[6]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995.
[7]K. Niguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly-efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993.
[8]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994.
[9]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986
[10]I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E.H. Turner, "Lithium niobate ridge waveguide modulator," Appl. Phys. Lett., vol. 24, pp.622-624, 1974.
[11]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp.544-546, 1975.
[12]W.L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp1318-1380, 1995.
[13]H. J. Lee and S. Y. Shin, "Lithium niobate ridge waveguides fabricated by wet etching," Electron. Lett., vol. 31, pp. 268-269, 1995.
[14]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp.1126-1135,1988.
[15]M. D. Feit, J. A. Fleck, and L. McCaughan, "Comparison of calculated and measured performance of diffused channel-waveguide couplers," J. Opt. Soc. Amer., vol.73, pp.1296-1304, 1983.
[16]S. Fouchet, A. Carenco, C. Dagnet, R. Guglielmi, and L. Riviere, "Wavelength dispersion of Ti-induced refractive index change in LiNbO3 as a function of diffusion parameters," J. Lightwave Techol., LT-5, pp.700-708, 1987.
[17]M. Minakata, S. Saito, M. Shibata, and S. Miyazawa, "Precise determination of refractive index changes in Ti-diffused LiNbO3 optical waveguides," J. Appl. Phys., vol. 49, pp.4677-4682, 1978.
[18]W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, "Diffusion in Ti:LiNbO3 planar and channel waveguides," J. Appl. Phys., vol. 50, pp.6175-6182, 1979.
[19]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics," Appl. Opt., vol. 19, 591-597, 1980.
[20]F. S. Chu and P. L. Liu, "Simulations of Ti:LiNbO3 waveguide modulators-a comparison of simulation techniques," J. Lightwave Technol., vol. 8, pp.1492-1496, 1990.
[21]P. Ganguly, D. C. Sen, S. Datt, J. C. Biswas, and S. K. Lahiri, "Simulation of refractive index profiles for titanium-indiffused lithium niobate channel waveguides," Fiber and Integrated Optics, vol. 15, pp. 135-147, 1996.
[22]J. Ctyroky, M. Hofman, J. Janta, and J. Schrofel, ŗ-D analysis of LiNbO3 Ti channel waveguides and directional couplers," IEEE J. Quantum Electron., vol. QE-20, pp. 400-409, 1984.
[23]M. S. Stern, "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. J, vol. 135, pp. 56-63, 1988.
[24]C. L. Xu, W. P. Huang, J. Chrostowski, and S. K. Chaudhuri, "A full-vectorial beam propagation method for anisotropic waveguides," J. Lightwave Technol., vol. 12, pp.1926-1931, 1994.
[25]M. S. Stern, "Rayleigh quotient solution of semivectorial field problems for waveguide with arbitrary index profiles," IEE Proc. J, vol. 138, pp. 185-190, 1991.
[26]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, London: Cambridge University Press, pp. 550-554.
[27]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994.
[28]A. Jennings, Matrix Computation for Engineers and Scientists, New York: Wiley, 1977.
[29]Alan Jennings, Matrix Computation for engineers and scientists. John Wily & Sons, 1977.
第三章
[1]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, pp. 1164-1168, 1995.
[2]R. S. Cheng, W. L. Chen, and W. S. Wang, "Mach-Zehnder modulators with lithium niobate ridge waveguides fabricated by proton-exchanged wet etch and nickel indiffusion," IEEE Photon. Technol. Lett., vol. 7, pp. 1282-1284, 1995.
[3]K. Niguchi, O. Mitomi, K. Kawano, and M. Yanagibashi, "Highly-efficient 40-GHz bandwidth Ti:LiNbO3 optical modulator employing ridge structure," IEEE Photon. Technol. Lett., vol. 5, pp. 52-54, 1993.
[4]K. Noguchi, H. Miyazawa, and O. Mitomi, ඓ GHz broadband Ti:LiNbO3 optical modulator with a ridge structure," Electron. Lett., vol. 30, pp. 946-950, 1994.
[5]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave light modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986
[6]I. P. Kaminow, V. Ramaswamy, R. V. Schmidt, and E.H. Turner, "Lithium niobate ridge waveguide modulator," Appl. Phys. Lett., vol. 24, pp.622-624, 1974.
[7]Y. Ohmachi and J. Noda, "Electro-optic light modulator with branched ridge waveguide," Appl. Phys. Lett., vol. 27, pp.544-546, 1975.
[8]W.L. Chen, R. S. Cheng, J. H. Lee, and W. S. Wang, "Lithium niobate ridge waveguides by nickel diffusion and proton-exchanged wet-etching," IEEE Photon. Technol. Lett., vol. 7, pp1318-1380, 1995.
[9]H. J. Lee and S. Y. Shin, "Lithium niobate ridge waveguides fabricated by wet etching," Electron. Lett., vol. 31, pp. 268-269, 1995.
[10]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: : a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp.1126-1135,1988.
[11]M. Fukuma and J. Noda, "Optical properties of titanium-diffused LiNbO3 strip waveguides and their coupling-to-a-fiber characteristics," Appl. Opt., vol. 19, 591-597, 1980.
[12]J. F. Liu, Y. B. Lin, and W. S. Wang, "Fine adjustment of the coupling length of Ti-diffused LiNbO3 directional coupler with groove Structure," accepted by Mircowave and Optical Technology Letters and will be published in the June 5, 2001 issue.
[13]J. F. Liu, Y. H. Wang, S. J. Chang, and W. S. Wang, "Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure," IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1204-1206, 2000.
[14]J. F. Liu, Y. B. Lin, and W. S. Wang, "Ti:Er:LiNbO3 laser with ridge structure pumped at 980 and 1477 nm," accepted by CLEO/Pacific Rim 2001, The 4th Pacific Rim Conference on Lasers and Electro-Optics.
第四章
[1]J. F. Liu, Y. H. Wang, S. J. Chang, and W. S. Wang, "Lowering the threshold pump power of Ti:Er:LiNbO3 laser with ridge structure," IEEE Photonics Technology Letters, vol. 12, no. 9, pp. 1204-1206, 2000.
[2]J. F. Liu, Y. B. Lin, and W. S. Wang, "Fine adjustment of the coupling length of Ti-diffused LiNbO3 directional coupler with groove Structure," accepted by Mircowave and Optical Technology Letters and will be published in the June 5, 2001 issue.
[3]R. Brinkmann, W. Sohler, and H. Suche, “Continuous-wave erbium-diffused LiNbO3 waveguide laser,” Electron. Lett., vol. 27, no. 5, pp.415-417, 1991.
[4]F. Caccavale, F. Segato, and I. Mansour, "A numerical study of erbium doped active LiNbO3 waveguides by the beam propagation method," J. Lightwave Technol., vol. 15, pp.2294-2300, 1997.
[5]I. Baumann, R. Brinkmann, M Dinand, W. Sohler, and S. Westenhöfer, “Ti:Er:LiNbO3 waveguide laser of optimized efficiency,” IEEE J. Quantum Electron., vol. 32, no. 9, pp.1695-1706, 1996.
[6]D. L. Veasey, J. Gray, J. Amin, and J.A. Aust, “Time-depedent modeling of Erbium-doped waveguide lasers in lituium niobate pumped at 980 and 1480 nm,” IEEE J. Quantum Electron., vol. 33, no.10, pp. 1647-1662, 1997.
[7]D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “A theoretical study of a Ti-diffused Er:LiNbO3 waveguide laser,” IEEE J. Quantum Electron., vol. 32, no.10, pp. 1833-1838, 1996.
[8]D. Zhang, C. Chen, J. Li, G. Ding, X. Chen, and Y. Cui, “Dependence of Ti-diffused Er:LiNbO3 laser efficiency on waveguide fabrication parameters and pump wavelength,” IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1231-1235, 1997.
[9]H. Suche, Greiner, W. Qiu, R. Wessel, and W. Sohler, “Integrated optical Ti:Er:LiNbO3 soliton source,” IEEE J. Quantum Electron., vol. 33, no. 10, pp. 1642-1646, 1997.
[10]M. S. Stern, "Semivectorial polarised finite difference method for optical waveguides with arbitrary index profiles," IEE Proc. J., vol. 135, no. 1, pp. 56-63, 1988.
[11]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994.
[12]K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, "A broadband Ti:LiNbO3 optical modulator with a ridge structure," J. Lightwave Technol., vol. 13, no. 6, pp. 1164-1168, 1995.
第五章
[1]M. Y. Papuchon, X. M. Combemale, D. B. Ostrawski, L. Reiber, A. M. Roy, B. Sejourne, and M. Werner, "Electrically switched optical directional coupler," Appl. Phys. Lett., vol. 27, pp. 289-291, 1975.
[2]H. A. Haus, and C. G. Fonstad, "Three-waveguide couplers for improved sampling and filtering," IEEE J. Quantum Electron., vol. QE-17, pp. 2321-2325, 1981.
[3]D. Yap, L. M. Johnson, and G. W. Pratt Jr, "Passive Ti:LiNbO3 channel waveguide TE-TM mode splitter," Appl. Phys. Lett., vol. 44, pp. 583-585, 1984.
[4]S. V. Burke, P. C. Kendall, S. Ritchie, M. J. Robertson, and P. N. Robson, "Analysis of rib waveguide coupler filters," IEE Proc. J, vol. 139, pp. 59-65, 1992.
[5]B. A. Prasad and A. Selvarajan, "Method for cross-state tuning in a directional coupler with uniform Db switching," Electron. Lett., vol. 30, pp. 816-817, 1994.
[6]H. Haga and S. Yamamoto, "Precise control of phase constant of optical guided-wave devices by loading Langmuir-Blodgett films," J. Lightwave Technol., vol. 6, pp. 1024-1027, 1988.
[7]R. Yoshimura, H. Nakagome, S. Imamura, and T. Izawa, "Coupling ratio control of polymeric waveguide couplers by bending," Electron . Lett . , vol. 28 , pp. 2135-2136, 1992.
[8]S. S. Lee, M.C. Oh, Y. K. Jhee, and S. Y. Shin, "Y-cut LiNbO3 directional coupler with a self-aligned electrode," J. Lightwave Technol., vol. 12, pp. 872-875, 1994.
[9]S. J. Al-Bader, "Application of etched grooves in integrated-optics channel isolation," IEEE Photon Technol. Lett., vol. 8, pp. 1044-1046, 1996.
[10]H. Haga, M. Izutsu, and T. Sueta, "LiNbO3 traveling-wave length modulator/switch with an etched groove," IEEE J. Quantum Electron., vol. 6, pp. 902-906, 1986.
[11]A. Sugita, K. Jingui, N. Takato, K. Katoh, and M. Kawachi, "Bridge-suspended silica-waveguide thermo-optic phase shifter and its application to Mach-Zehnder type optical switch," IEEE Trans. IEICE E. vol. 73, pp. 105-108, 1990.
[12]A. J. Weierholt, A. R. Mickelson, and S. Neegard, "Eigenmode analysis of symmetric parallel waveguide couplers," IEEE J. Quantum Electron., QE-23, pp. 1689-1692, 1987.
[13]A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Techol., LT-3, pp. 1135-1146, 1985.
[14]J. Y. Su, P. K. Wei, and W. S. Wang, "A new iterative method for the analysis of longitudinally invariant waveguide couplers," J. Lightwave Technol., vol. 12, pp. 2056-2065, 1994.
[15]E. Strake, G. P. Bava, and I. Montrosset, "Guided modes of Ti:LiNbO3 channel waveguides: a novel quasi-analytical technique in comparison with the scalar finite-element method," J. Lightwave Techol., vol. 6, pp. 1126-1135, 1988.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top