|
References [1] C. T. Liu, “Circuit requirement and integration challenges of thin gate dielectrics for ultra small MOSFETs,” in IEEE IEDM Tech. Dig., 1998, p. 747. [2] Y. Shi, X. Wang, and T. P. Ma, “Tunneling leakage current in ultrathin ( < 4nm ) nitride/oxide stack dielectrics,” IEEE Electron Device Lett., vol. 19, p. 388, 1998. [3] E. M. Vogel, K. Z. Ahmed, B. Hornung, W. K. Henson, P. K. McLarty, G. Lucovsky, J. R. Hauser, and J. J. Wortman, “Modeled tunnel currents for high dielectric constant dielectrics,” IEEE Trans. Electron Devices, vol. 45, p. 1350, 1998. [4]L. F. Register, E. Rosenbaum and K. Yang, “Analytic model for direct tunneling current in polycrystalline silicon-gate metal-oxide-semiconductor devices,” Appl. Phys. Lett., vol. 74, p. 457, 1999. [5]C. -H. Choi, K. -H. Oh, J. -S. Goo, Z. Yu, and R. W. Dutton, “Direct tunneling current for circuit simulation,” in IEEE IEDM Tech. Dig., 1999, p. 735. [6]J. Wu, L. F. Register, and E. Rosenbaum, “Trap-assisted tunneling current through ultra-thin oxides,” Proceeding of the International Reliability Physics Symposium, p. 389, 1999. [7]L. Larcher, A. Paccagnella, A. Scarpa, and G. Ghidini, “A new model of tunneling current and SILC in ultra-thin oxides,” in IEEE IEDM Tech. Dig., 1998, p. 901. [8]A. Schenk, and G. Heiser, “Modeling and simulation of tunneling through ultra-thin gate dielectrics,” J. Appl. Phys., vol. 81, p. 7900, 1997. [9]Mohamed Yehye Dighish and Fat Duen Ho, “A comprehensive analytical model for metal-insulator-semiconductor (MIS) devices,” IEEE Trans. Electron Devices, vol. 39, p. 2771, 1992. [10] A. Ghetti, E. Sangiorgi, J. Bude, T. W. Scrsch, and G. Weber, “Low voltage tunneling in ultra-thin oxides: a monitor for interface states and degradation,” in IEEE IEDM Tech. Dig., 1999, p. 731. [11] S.-i. Takagi, M. Takayanagi and A. Toriumi, “Experimental examination of physical model for direct tunneling current in unstressed/stressed ultrathin gate oxides,” in IEEE IEDM Tech. Dig., 1999, p. 461. [12] R. Rofan, and C. Hu, “Stress-induced oxide leakage,” IEEE Electron Device Lett., vol. 12, p. 632, 1991. [13] P. E. Nicollian, M. Rodder, D. T. Grider, P. Chen, R. M. Wallace, and S. V. Hattangady, “Low voltage stress-induced-leakage-current in ultrathin gate oxides,” Proceeding of the International Reliability Physics Symposium, p. 400, 1999. [14] Reza Moazzami and Chenming Hu, “Stress-induced current in thin silicon dioxide films,” in IEEE IEDM Tech. Dig., 1992, p. 139. [15] D. J. DiMaria and E. Cartier, “Mechanism for stress-induced leakage currents in thin silicon dioxide films,” J. Appl. Phys., vol. 78, p. 3883, 1995. [16] N. K. Patel and A. Toriumi, “Stress-induced leakage current in ultrathin SiO2 films,” Appl. Phys. Lett., vol. 64, p. 1809, 1994. [17] S.-i. Takagi, N. Yasuda, and A. Toriumi, “Experimental evidence of inelastic tunneling and new I-V model for stress-induced leakage current,” in IEEE IEDM Tech. Dig., 1996. p. 323. [18] A. I. Chou, K. Lai, K. Kumar, P. Chowdhury, and J. C. Lee, “Modeling of stress-induced leakage current in ultrathin oxides with the trap-assisted tunneling mechanism,” Appl. Phys. Lett. , vol. 70, p. 3407, 1997. [19] B. Riccó, G. Gozzi, and M. Lanzoni, “Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films,” IEEE Trans. Electron Devices, vol. 45, p. 1554, 1998. [20] K. Lai, W. M. Chen, M. Y. Hao, and J. Lee, “Turn-around effects of stress-induced leakage current of ultrathin N2O-annealed oxides,” Appl. Phys. Lett., vol. 67, p. 673, 1995. [21] Y. Shi, T. P. Ma, S. Prasad, and S. Dhanda, “Polarity-dependent tunneling current and oxide breakdown in dual-gate CMOSFET’s,” IEEE Electron Device Lett., Vol. 19, no. 10, p. 391, 1998. [22] Y. Shi, T. P. Ma, S. Prasad, and S. Dhanda, “Polarity dependent gate tunneling currents in dual-gate CMOSFET’s,” IEEE Trans. Electron Devices, Vol. 45, no. 11, p. 2355, 1998. [23] P. P. Apte and K. C. Saraswat, “SiO2 degradation with charge injection polarity,” IEEE Electron Device Lett., vol. 14, p. 512, 1993. [24] L. K. Han, M. Bhat, D. Wristers, J. Fulford, and D. L. Kwong, “Polarity dependence of dielectric breakdown in scaled SiO2,” in IEEE IEDM Tech. Dig., 1994, p. 617. [25] K. Eriguchi and M. Niwa, “Stress polarity dependence of the activation energy in time-dependent dielectric breakdown of thin gate oxides,” IEEE Electron Device Lett., vol. 19, p. 399, 1998. [26] H. Satake and A. Toriumi, “Dielectric breakdown mechanism of thin-SiO2 studied by the post-breakdown resistance statistics,” IEEE Trans. Electron Devices, vol. 47, p. 741, 2000. [27] H. Satake and A. Toriumi, “Dielectric breakdown mechanism of thin-SiO2 studied by the post-breakdown resistance statistics,” in Symposium on VLSI Tech. Dig. 1999, p. 61. [28] M. Depas, T. Nigam, and M. M. Heyns, “Soft breakdown of ultrathin gate oxide layers,” IEEE Trans. Electron Devices, vol. 43, p. 1499, 1996. [29] T. Tomita, H. Utsunomiya, T. Sakura, Y. Kamakura, and K. Taniguchi, “A new soft breakdown model for thin thermal SiO2 films under constant current stress,” IEEE Trans. Electron Devices, vol. 46, p. 159, 1999. [30] S. H. Lee, B. J. Cho, J. C. Kim, and S. H. Choi, “Quasi-breakdown of ultrathin gate oxide under high field stress,” in IEDM Tech. Dig., p. 605, 1994. [31] K. Y. Fu, “Partial breakdown of the tunnel oxide in floating gate devices,” Solid-State Electron. vol. 41, p. 774, 1997. [32] M. Houssa, T. Nigam, P. W. Mertens, and M. M. Heyns, “Soft breakdown in ultrathin gate oxides: correlation with the percolation theory of nonlinear conductors,” Appl. Phys. Lett. vol. 73, p. 514, 1998. [33] E. Miranda, J. Suñé, R. Rodríguez, M. Nafría, and X. Aymerich, “Switching behavior of the soft breakdown conduction characteristic in ultra-thin (<5 nm) oxide MOS capacitors,” in IRPS Tech., Dig. p. 42, 1998. [34] B. E. Weir, P. J. Silverman, D. Monroe, K. S. Krisch, M. A. Alam, G. B. Alers, T. W. Sorsch, G. L. Timp, F. Baumann, C. T. Liu, Y. Ma, and D. Hwang, “Ultra-thin gate dielectrics: they break down, but do they fail?,” in IEDM Tech. Dig. p. 73, 1997. [35] E. Rosebaum, and L. F. Register, “Mechanism of stress-induced leakage current in MOS capacitors,” IEEE Trans. Electron Devices, vol. 44, p. 317, 1997. [36] C. T. Liu, A. Ghetti, Y. Ma, G. Alers, C. P. Cheung, J. I. Colonell, W. Y. C. Lai, C. S. Pai, R. Liu, H. Vaidya, and J. T. Clemens, “Intrinsic and stress-induced traps in the direct tunneling current of 2.3-3.8nm oxides and unified characterization methodologies of sub-3nm oxides,” in IEEE IEDM Tech. Dig., 1997, p. 85. [37] P. P. Apte and K. C. Saraswat, “ SiO2 degradation with charge injection polarity,” IEEE Electron Device Lett., vol. 14, p. 512, 1993. [38] I. C. Chen, S. Holland, and C. Hu, “ Oxide breakdown dependence on thickness and hole current-enhanced reliability of ultra thin oxides,” in IEEE IEDM Tech. Dig., 1986, p. 660. [39] John G. Simmons, “ Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film,” J. Appl. Phys., vol. 34, p. 1793, 1963. [40] P. Riess, and G. Ghibaudo, and G. Pananakakis, “ Analysis of the stress-induced leakage current and related trap distribution,” Appl. Phys. Lett., vol. 75, p. 3871, 1999. [41] Reza Moazzami and Chenming Hu, “Stress-induced current in thin silicon dioxide films,” in IEEE IEDM Tech. Dig., 1992, p. 139. [42] B. Riccó, G. Gozzi, and M. Lanzoni, “Modeling and simulation of stress-induced leakage current in ultrathin SiO2 films,” IEEE Trans. Electron Devices, vol. 45, p. 1554, 1998. [43] C. T. Liu, A. Ghetti, Y. Ma, G. Alers, C. P. Cheung, J. I. Colonell, W. Y. C. Lai, C. S. Pai, R. Liu, H. Vaidya, and J. T. Clemens, “Intrinsic and stress-induced traps in the direct tunneling current of 2.3-3.8nm oxides and unified characterization methodologies of sub-3nm oxides,” in IEEE IEDM Tech. Dig., 1997, p. 85. [44] M. Houssa, T. Nigam, P. W. Mertens, and M. M. Heyns, “Model for the current-voltage characteristics of ultrathin gate oxides after soft breakdown,” J. Appl. Phys., vol. 84, p. 4351, 1998. [45] R. B. Fair, “Anomalous B penetration through ultrathin gate oxides during rapid thermal annealing,” IEEE Electron Devices Lett. vol. 20, p.466, 1999. [46] R. Singh, S. V. Nimmagadda, V. Parihar, Y. Chen, K. F. Poole, “Role of rapid photothermal processing in process integration,” IEEE Trans. Electron Devices, vol. 45, p. 643, 1998. [47] K. R. Farmer, R. Saletti, and R. A. Buhrman, “Current fluctuations and silicon oxide wear-out in metal-oxide-semi-conductor tunnel diodes,” Appl. Phys. Lett. vol. 52, p. 1749, 1988. [48] K. R. Farmer, C. T. Rogers, and R. A. Buhrman , “Localized-state interactions in metal-oxide-semiconductor tunnel diodes,” Phys. Rev. Lett. vol. 58, p. 2255, 1987. [49] M. Houssa, N. Vandewalle, M. Ausloos, P. W. Mertens and M.M. Heyns, “ Analysis of the gate voltage fluctuations in ultra-thin gate oxides after soft breakdown,” in IEDM Tech. Dig. p. 909, 1998. [50] R. Singh, F. Radpour, and P. Chou, “Comparative study of dielectric formation by furnace and rapid isothermal processing,” J. Vac. Sci. Technol. A vol. 7, p. 1456, 1989. [51] G. B. Alers, K. S. Krisch, D. Monroe, B. E. Weir, and A. M. Chang, “Tunneling current noise in thin gate oxides,” Appl. Phys. Lett. vol. 69, p. 2885, 1996. [52] C. -H. Chen, “ Application of anodization technique on MOS solar cell and ultra-thin gate oxide,” Master thesis, National Taiwan University, Taipei, Taiwan, 2001. [53] J. -L. Su, “Observation on the thermal-induced stress effect and uniformity improvement of rapid thermal ultra-thin gate oxide,” Master thesis, National Taiwan University, Taipei, Taiwan, 2001. [54] Y. -R. Yen, “ Study on thickness uniformity of rapid thermal thin gate oxide,” Master thesis, National Taiwan University, Taipei, Taiwan, 2000.
|