跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/08 18:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳美如
研究生(外文):Chen May-Ru
論文名稱:一個新的甕模型
論文名稱(外文):A New Urn Model
指導教授:魏慶榮魏慶榮引用關係
指導教授(外文):Wei Ching-Zong
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:32
中文關鍵詞:甕模型波利亞平賭過程強收斂絕對連續
外文關鍵詞:urn modellya-Eggenbergermartingaleconverges a.s.absolutely continuous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文主要是提出一個新的甕模型:
有一個甕,一開始裝有b個黑球和w個白球,每次隨機取出m
個球,假設取出k個黑球及m-k個白球,那麼除了放回原被取
出的m個球之外,再多放ck個黑球及c(m-k)個白球至甕中,其
中c是某固定的正整數。從每次抽球到把球放回甕中的這一連
串的動作稱為抽一次球。我們將連續地抽n次球。
事實上,當m=c=1,這個新模型就是古典的Pólya-Eggenberger甕模型。定義甕裡的黑球比例為Xn。仿照前人研究Pólya-Eggenberger甕模型的方法,我們證明Xn形成一個martingale,並且強收斂到一個隨機變數X。雖然我們並未能求得X的分配為何,但我們證明了X具有絕對連續的特性。

In this thesis, we propose a new urn model as following. A single urn contains b black balls and w white balls. For each time, we randomly draw m balls and note their colors, said k black balls and m-k white balls. Return the drawn balls with additional ck black balls and c(m-k) white balls. Repeat n times. When m=c=1, this is the classical Pólya-Eggenberger urn model. Let Xn be the fraction of black balls. To investigate the asymptotic properties of our new urn model, we first show that Xn forms a martingale and converges a.s. to a random variable X. The distribution of X is then shown to be absolutely continuous.

1 Introduction
2 Pólya-Eggenberger Urn Model and Its Generalizations and Modifications
2.1 The Pólya-Eggenberger Urn Model
2.2 A Tenable Pólya-Eggenberger Urn Model
2.3 Penmantle Urn Model
2.4 Hill, Lane and Sudderth Urn Model
2.5 Cannibal Model
2.6 Ivchenko and Ivanov Urn Model
2.7 A Generalized Pólya's Urn Design (GPUD)
2.8 The Waiting Time Random Variable with Quota
3 A New Urn Model and Some Computational Studies
3.1 A New Model
3.2 Computational Studies
4 Martingale Property and Absolute Continuity of the Limit
4.1 Martingale
4.2 Absolute Continuity
5 Appendix
5.1 Figures
5.2 Programs

[1] Bagchi, A. and Pal, A. K. (1985). Asymptoic Normality in the Generalized Pólya-Eggenberger Urn Model, with an Application to Computer Data Structures. SIAM Journal of Algebraic Discrete Methods. 6. 394-405.
[2] Billingsley, P. (1995). Probability and Measure. Third Edition. New York: John Wiley and Sons.
[3] Blom, G. and Holst, L. (1991). Embedding Procedures for Discrete Problems in Probability. The Mathematical Scientist. 16. 29-40.
[4] Chung, K. L. (1974). A Course in Probability Theory. Second Edition. San Diego: Academic Press.
[5] Eggenberger, F. and Pólya, G. (1923). Über die Statistik Verketetter Vorgänge. Zeitschrift für Angewandte Mathematik und Mechanik. 1. 279-289.
[6] Feller, W. (1966). An Introduction to Probability Theory and Its Applications. Second Edition. New York: John Wiley and Sons. II.
[7] Gouet, R. (1989). A Martingale Approach to Strong Convergence in a Generalized Pólya-Eggenberger Urn Model. Statistics and Probabilitty Letters. 8. 225-228.
[8] Gouet, R. (1993). Martingale Functional Central Limit Theorems for a Generalized Pólya Urn. The Annals of Probability. 21. 1624-1639.
[9] Green, R. F. (1980). The Cannibal's Urn. Unpublished Manuscript.
[10] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. New York: Academic Press.
[11] Hill, B., Lane, D. and Sudderth, W. (1980). A Strong Law for Some Generalized Urn Processes. The Annals of Probability. 8. 214-226.
[12] Ivchenko, G. I. and Ivanov, V. A.(1995). Decomposable Statistics in Inverse Urn Problems. Discrete Mathematics and Applications. 5. 159-172.
[13] Johnson, N. L. and Kotz, S. (1977). Urn Models and Their Application. New York: John Wiley and Sons. 176-181.
[14] Kotz, S. and Balakrishnan, N. (1997). Advances in Urn Models During the Past Two Decades. Advances in Combinatorial Methods and Applications to Probability and Statistics. 203-257.
[15] Ling, K. D. (1993). Sooner and Later Waiting Yime Distributions for Frequency Quota Defined on a Pólya-Eggenberger Urn Model. Soochow Journal of Mathematics. 19. 139-151.
[16] Maistrov, L. E. (1974). Probability Theory: a Historical Sketch. New York and London: Academic Press.
[17] Medvedev, Yu. I. (1970). Some Theorems on Asymptotic Distribution of the Chi-squared Statistic. Soviet Mathematical Doklady. 192. 987-989.
[18] Pemantle, R. (1990). A Time-Dependent Version of Pólya's Urn. Journal of Theoretical Probability. 3. 627-637.
[19] Pittel, B. (1987). An Urn Model for Cannibal Behavior. Journal of Applied Probability. 24. 522-526.
[20] Stewart, I. (1989). Galois Theory. Second Edition. New York: Chapman and Hall. %21-22
[21] Wei, C. Z. (1993). Martingale Transforms with Non-atomic Limits and Stochastic Approximation. Probability Theory and Related Fields. 95. 103-114.
[22] Wei, L. J. (1979). The Generalized Pólya's Urn Design for Sequential Medical Trials, Annals of Statistics. 7. 291-296.
[23] Wheeden, R. L. and Zygmund, A. (1977). Measure and Integral:An Introduction to Real Analysis. New York: Dekker, M.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top