跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:史習偉
研究生(外文):Hsi-Wei Shih
論文名稱:均勻分佈測度之性質
論文名稱(外文):Properties of Uniformly Distributed Measure
指導教授:劉豐哲
指導教授(外文):Fon-Che Liu
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:33
中文關鍵詞:均勻分佈測度
外文關鍵詞:uniformly distributed measuretangent measure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:239
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  此篇文章中,我們主要是探討定義於R^n上之所謂〝Uniformly Distributed Measure〞。
  在1987年,Preiss教授所發表的文章中,將關於此類測度的幾何性質做了些許之探究;其內容主要是藉由測度所衍生出之moments,以其對s之漸近行為,而獲致有關測度之support的巨觀表象。
  我們將試著更進一步地了解與探究moments所扮演的角色及其重要性
;另外,我們也以另一角度與方法,獲致類似的結果,並與[P]中之証明推論作一比較。

In this essay, we consider the so called uniformly
distributed measure over R^n. In [P], geometric properties for
such measures had been derived. Practically, all the main
results and conclusions in [P] are all based upon behavior of
approximation of momentsof the measure Φ by polynomial in s to certain order when s → ∞ and when s↘0.
To investigate the support of a measure, we usually look at its tangent measures so that a global view for its support
can be obtain. For this purpose, we try to look more closely
these moments, and, for comparison,to give other approaches to obtain some of results in [P].

1.Introduction.................................................2
2.Preliminaries................................................3
3.Moments of Measures over R^n................................11
4.Supports for Uniformly Distributed Measures over R^n........15
5.Some Remarks of Uniformly Distributed Measure over R^n......27

[P] D.Preiss, Geometry of Measures in R^n :Distribution,
rectifiability, and densities, Ann. of Math.125 (1987),
537-643.
[M] P. Mattila, Geometry of Sets and Measures in Euclidean
Spaces: Fractals and rectifiability, Cambridge University
Press, 1995.
[F] H. Federer, Geometric Measure Theory, Springer-Verlag,
New York, 1969.
[Fa] K. J. Falconer, Geometry of Fractal Sets, Cambridge
University Press, 1985.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top