跳到主要內容

臺灣博碩士論文加值系統

(44.222.82.133) 您好!臺灣時間:2024/09/15 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊進丁
論文名稱:預混火焰在絕熱容器內非穩態傳播之數值研究
指導教授:李石頓李石頓引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:127
中文關鍵詞:火焰數值方法G方程式
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文使用數值方法研究火焰在絕熱容器內非穩態傳播的現象,燃燒化學反應區以薄火焰模式簡化為一界面,燃燒速度則隨著未燃氣熱力性質和火焰面曲率的改變而變化,等位面(level set)G方程式用來描述此界面隨時間的運動。計算結果和實驗及DNS計算方法所得的結果非常相似。研究內容首先是探討管長、管徑、初始點火形狀、燃燒速度和圓管轉速等參數對火焰傳播的影響,結果顯示蕈狀形(mushroom shape)和鬱金香形(tulip shape)火焰都能在封閉管內穩定地傳播,而火焰成形機制主要是受到流體動力的影響。其次發現當點火端邊界由封閉口改為開放口時,計算的火焰形狀大部份沒有定性上的改變。最後在對火焰傳播進行穩定分析時,結果指出降低密度比、增加燃燒速度和縮短擾動波長皆會助長Darrieus-Landau 不穩定性,重力對火焰不穩定性亦有很大的影響。

Unsteady flames propagating in an adiabatic enclosure are investigated by a numerical method. The use of thin flame model simplifies the combustion chemical reaction zone as a flame sheet, of which the burning velocity is a function of unburned gas thermodynamic properties and the flame curvature. A level set G equation is employed to describe kinematics of the interface. Computational results are similar to those obtained by experimental and DNS numerical methods. In this study, the effects of tube length and diameter, initial flame shape, burning velocity, and tube rotating speed on flame propagation are analyzed first. Results show that both mushroom shape and tulip shape flames can propagate steadily in a closed tube. The mechanisms of flame shape formation are affected by hydrodynamics strongly. As the boundary of ignition side is changed from the closed end to the open end, there is no qualitative change of the flame shape for most flames. The flame stability analysis reveals that lowering the density ratio, increase in the burning velocity, and decrease in the disturbance wave number will amplify Darrieus-Landau instability. The gravity force also has the great effects on the flame stability.

目 錄
誌謝………………………………………………………..ⅰ
摘要………………………………………………………..ⅱ
英文摘要…………………………………………………..ⅲ
表目錄……………………………………………………..ⅳ
圖目錄……………………………………………………..ⅴ
符號說明…………………………………………………..ⅺ
目錄………………………………………………………ⅹⅸ
第1章 前言……………………………………………..1
1-1研究動機………………………………………….1
1- 2文獻回顧…………………………………………2
1- 3研究說明…………………………………………6
第2章 數學模型…………………………………………8
2-1 統制方程式………………………………………..9
2- 2火焰面運動方程式………………………………11
2-3初始條件和邊界條件……………………………..13
第3章 數值方法………………………………………….15
3- 1流場計算方法……………………………………..15
3-1.1格點系統……………………………….…….16
3-1.2流場差分方程式的建立………………….….17
3-1.3壓力修正量差分式的建立……………….….19
3-1.4初始條件和邊界條件之差分式……………..23
3-1.5時間間隔和收歛標準………………………..24
3-1.6促進收斂的技巧……………………………..25
3-2壓力方程式和體積源項之處理……………………27
3-3 G方程式的計算…………………………………….29
3-3.1 G方程式的格點系統………………………...29
3-3.2 G差分式的建立……………………………...30
3-3.3 初始條件和邊界條件的差分式………….….31
3-3.4時間間隔………………………………………33
3-3.5一維層流火焰燃燒速度之處理……………….34
第4章 層流火焰在絕熱封閉圓管內傳播………………….37
4-1火焰在不同長度圓管內傳播……………………….37
4-2圓管管徑對火焰傳播的影響………………………..42
4-3火焰面曲率對火焰傳播的影響……………………..44
4-4初始火焰形狀對火焰傳播的影響…………………...46
4-5圓管旋轉速度對火焰傳播的影響…………………….47
4-6火焰在封閉管內傳播的結論………………………….50
第5章火焰在絕熱圓管內由開口端向封閉端傳播之數值研究
……………………………………………………………...52
5-1本文計算結果與DNS計算結果的比較………………53
5-2初始火焰形狀對一端開口管火焰傳播的影響………..54
5-3管徑對一端開口管火焰傳播的影響…………………..55
5-4圓管轉速對一端開口管火焰傳播的影響……………..56
5-5火焰由開口端向閉口端傳播的結論……………..……58
第6章 火焰DARRIEUS-LANDAU與RAYLEIGH-
TAYLOR不穩定性的數值研究……………………………..60
6-1數學方程式…………………………………………….…61
6-2 初始條件和邊界條件…………………………………63
6-3 出口、計算網格和時間間隔的處理……………………65
6-4結果與討論……………………………………………….67
6-5穩定分析的結論…………….…………………………….71
第7章結論與展望…………………………………………………73
7-1結論……………………………………………………….73
4- 2未來展望…………………………………………….…..74
參考文獻……………………………………………………….…..76
附表………………………………………………………………..84
附圖………………………………………………………………..89
附錄A…………………………………………………………….126
附錄B…………………………………………………………….129
附錄C…………………………………………………………….131

[1] S. T. Lee, and C. H. Tsai, “Numerical investigation of steady laminar flame propagation in a circular tube,” Combustion and Flame, Vol. 99, pp. 484-490, 1994.
[2] Y. B. Zel’dovich, A. G. Istratov, N. I. Kidin, and V. B. Librovi-ch, ”Flame propagation in tubes: hydrodynamics and stability,” Combustion Science and Technology, Vol. 24, pp.1-13, 1980.
[3] Y. B. Zel’dovich, ”Structure and stability of steady laminar flame at moderately large Reynolds number,” Combustion and Flame, Vol. 40, pp.225-234, 1981.
[4] Y. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, The Mathematical Theory of Combustion and Explosions, Plenum, New York, pp.436-498, 1985.
[5] B. Lewis, and G. von Elbe, “ Combustion, Flames and Explosions of Gases,” Third Edition, Academic Press, Orlando, Florida, 1987.
[6] M. Gonzalez, R. Borghi, and A. Saouab, “Interaction of a Flame Front with its self-generated flow in an enclosure: The “tulips Flame” Phenomenon,” Combustion and Flame, Vol. 88, pp. 201-220, 1992.
[7] B. N'konga, G. Fernandez, H. Guillard, and B. Larrouturou, “Numerical investigations of the tulip flame instability─comparisons with experimental results,” Combustion Science and Technology, Vol. 87, pp.69-89, 1992.
[8] F. S. Marra, and G. Continillo, ”Numerical study of premixed laminar flame propagation in a closed tube with a full Navior-Stokes Approach,” Twenty-sixth Symposium (international) on Combus-tion, pp.907-913, 1996.
[9] G. H. Markstein, Non-steady Flame Propagation, Macmillan Company, New York, pp.107-181, 1964.
[10] R. Starke, and P. Roth, “An experimental investigation of flame behavior during cylindrical vessel explosions,” Combustion and Flame, Vol. 66, pp. 249-259, 1986.
[11] D. D. Rankin, P. K. Barr, and R. F. Sawyer, “Numerical and experimental study of “Tulip” flame formation in a closed vessel,” Twenty-first Symposium (international) on Combustion, pp.1291-1301, 1986.
[12] J. Jarosinski, R. A. Strehlow, and A Azarbarzin, ”The mechanisms of lean limit extinguishment of an upward and downward propagating flame in a standard flammability tube,” Nineteenth Symposium (international) on Combustion, pp.1549-1557, 1982.
[13] V. Karlin, G. Makhviladze, J. Roberts, and V. I. Melikhov, “Effect of Lewis number on flame front fragementation in narrow closed channels,” Combustion and Flame, Vol. 120, pp. 173-187, 2000.
[14] J. Zhu, and P. D. Ronney, “Simulation of front propagation at large non-dimensional flow disturbance intensities,” Combustion Science and Technology, Vol. 100, pp.183-201, 1994.
[15] C. Rhee, L. Talbot, and J. A. Sethian, “ Dynamical study of a premixed V flame,” Journal of Fluid Mechanics, Vol.300, pp.87-115, 1995.
[16] J. Chomiak, and G. Zhou, “A numerical study of large amplitude baroclinic instabilities of flame,” Twenty-sixth Symposium (interna-tional) on Combustion, pp.883-889, 1996.
[17] J. Qian, G. Tryggvason, and C. K. Law, “A front tracking method for the motion of premixed flames,” Journal of Computational Physics, Vol. 144, pp. 52-69, 1998.
[18] T. Poinsot, T. Echekki, and M. G. Mungal, “A study of the laminar flame tip and implications for premixed turbulent combustion,” Combustion Science and Technology, Vol. 81, pp.45-73, 1992
[19] D. B. Spalding, and J. Z. Y. Wu, “The Landau and Rayleigh-Taylor instabilities in turbulent flame propagation,” Physicochemical Hydrodynamics, Vol. 9, No. 3/4, pp. 479-500, 1987.
[20] D. B. Spalding, and J. Z. Y. Wu, “Numerical studies of propagating flames exhibiting the Landau and Rayleigh-Taylor instability,” Physicochemical Hydrodynamics, Vol. 7, No. 5/6, pp. 353-384, 1986.
[21] S. Osher, and J. A. Sethian, “Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formu-lation,” Journal of Computational Physics, Vol. 79, pp. 12-49, 1990.
[22] V. V. Bychkov, A. I. Kleev, and M. A. Liberman, “A thin front model applied to flame propagation in tubes,” Combustion and Flame, Vol. 113, pp. 470-472, 1998.
[23] W. T. Ashurst, “Vortex simulation of unsteady wrinkled laminar flames,” Combustion Science and Technology, Vol. 52, pp.325-351, 1987.
[24] U. Bielert, and M. Sichel, ”Numerical simulation of premixed combustion processes in closed tubes,” Combustion and Flame, Vol. 114, pp. 397-419, 1998.
[25] A. F. Ghoniem, “Computational methods in turbulent reacting flow,” Reacting Flows: Combustion and Chemical Reactors, Lectures in applied mathematics, Vol.24, pp.199-265, 1986.
[26] A. Majda, and J. A. Sethian, “The derivation and numerical solution of the equations for zero Mach number combustion,” Combustion Science and Technology, Vol.42, pp.185-205, 1985.
[27] 林宜君,”圓管內預混火焰傳播現象之研究”,國立台灣大學機械工程研究所碩士論文,1995
[28] 張文東,”預混火焰在絕熱封閉圓管內傳之研究”,國立台灣大學機械工程研究所碩士論文,1998
[29] G. I. Sivashinsky, Z. Rakib, M. Matalon, and S. H. Sohrab, ”Flame propagation in a rotating gas,” Combustion Science and Technology, Vol. 57, pp. 37-53, 1988.
[30] K. Yamamoto, S. Ishizuka, and T. Hirano, “Effect of rotation on the stability and structure of tabular flame,” Twenty-fifth Symposium (international) on Combustion, pp.1399-1406, 1994.
[31] P. Pelce, and P. Clavin, “Influence of hydrodynamics and diffusion upon the stability limits of laminar premixed flames”, Journal of Fluid Mechanics, Vol.124, pp.219-237, 1982.
[32] B. Renou, A. Boukhalfa, D. Puechberty, and M. Trinite, “Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis number,” Combustion and Flame, Vol. 123, pp. 507-521, 2000.
[33] A. R. Kerstein, W. T. Ashurst and F. A. Williams, “Field equation for interface propagation in an unsteady homogeneous flow field,” Physical Review A, Vol. 37, No. 7, pp. 2728-2731.
[34] J. S. Tien, “The flame front problem: combustion in low Reynolds number flow,” ASME paper 86-WA/HT-49, pp.1-12, 1986.
[35] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[36] P. van Doormaal, and G. D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numerical Heat Transfer, Vol. 7 , pp. 147-163, 1984.
[37] D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, Computational Fluid Mechanics and Heat Transfer, McGRAW-HILL company, New York, pp115-138, 1984.
[38] M. Metghalchi, and J. C. Keck, “Laminar burning velocity of propane-air mixtures at high temperature and pressure,” Combustion and Flame, Vol. 38, pp. 143-154, 1980.
[39] S. M. Candel, and T. J. Poinsot, “Flame stretch and the balance equation for the flame area,” Combustion Science and Technology, Vol. 70, pp. 1-15, 1990.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top