跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/27 13:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉佳斌
研究生(外文):Chia-Pin Liu
論文名稱:運動性分解於齒輪機構拓樸及運動分析上之應用
論文名稱(外文):On the Application of Kinematic Fractionation to the Topological Analysis and Kinematic Analysis of Gear Mechanisms
指導教授:陳達仁陳達仁引用關係
指導教授(外文):Dar-Zen Chen
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:113
中文關鍵詞:齒輪機構運動性分解拓樸分析運動分析模組化設計
外文關鍵詞:gear mechanismskinematic fractionationtopological analysiskinematic analysismodular design
相關次數:
  • 被引用被引用:1
  • 點閱點閱:281
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文旨在建立以運動關係為基礎的分解概念,並以此觀念為出發點,發展模組化的程序進行齒輪機構的拓樸分析與運動分析。為進行模組化的設計,必須有適當的分解方法來表達機構的組成架構。在成功的模組化齒輪機構設計例子中,可發現有以結構特性為基礎的分解模式,或以功能取向的分解模式。無論以結構特性或以功能區分作為分解依據,機構的組成都是以階層式的架構展現。
在本文中,將發展以輸入端與輸出端之間的運動依存關係作為分解依據的分解方法。根據齒輪機構內運動的傳遞關係,可發現每個臂桿與其承接之所有齒輪可視為機構內的的一個獨立運動單元。故以分離運動單元的方式,可將齒輪機構分解為鏈狀的組成架構。論文內將發展兩種進行運動分解的程序,包括以桿件鄰接矩陣為基礎的矩陣法與以位移圖為基礎的圖解法。兩種方法可獲致相同的結果,其中矩陣法適用於以構造碼表示的運動鏈,而圖解法則可直觀、快速的分解以圖畫法表示的運動鏈。藉由運動單元的分解,齒輪機構內的運動關係可被適當的分割。由群組化的運動關係,可凸顯桿件間的運動關係,並可藉此判斷贅餘桿件的存在與否。經由運動單元所揭釐的運動內涵,可發展出一套針對齒輪機構之拓樸分析方法,藉由直觀的觀察法,決定出運動鏈內,適當的輸入與輸出桿件的擺放位置。當機構的拓樸構型決定後,運動分解即可顯示輸入與輸出間的運動傳遞關係。由傳遞路徑上運動單元的結合狀況,整體的運動關係即可經由結合各個運動單元的傳遞值而決定。
相信藉由本論文所發展的運動分解概念,必能使齒輪機構在概念設計的階段以更有效率的方式進行,同時也能使設計者在設計過程中對機構的運動內涵有更充足的認識。

The concept of kinematic fractionation for geared mechanisms is introduced in this work. Based on this concept, systematic approaches to the topological analysis and kinematic analysis are developed to facilitate the conceptual design of geared mechanisms.
In this dissertation, it will be shown that a carrier and all gears on it form a kinematic unit of the geared mechanism. By separating the kinematic units, a geared mechanism can be decomposed according to the kinematic relations between input and output. Two approaches to perform kinematic fractionation are developed including the matrix-based method and the graph-based method. By identifying the embedded kinematic units, kinematic insight can be exposed, which leads to straightforward and promising rules to prevent redundant links. These rules form the basis of a by-inspection procedure to determine admissible locations of ground, input and output in a geared kinematic chain. As the topological configuration of a mechanism is determined, the connecting conditions among kinematic units reveal the kinematic propagating path between input and output. Along the path, the global kinematic relation can then be determined by collecting the local gains of each kinematic unit.
It is believed that the concept of kinematic fractionation is beneficial to the conceptual design of geared mechanisms since the designer can have comprehensive awareness of the kinematic insight of the mechanism.

Chapter 1 Introduction ..................................1
1.1 Background ...........................................1
1.2 Overview of related works ............................3
1.3 Motivation and preview ...............................6
Chapter 2 Decomposition schemes of gear mechanisms .....10
2.1 Introduction ........................................10
2.2 Graph representation ................................13
2.3 Structural fractionation ............................14
2.4 Functional fractionation ............................17
2.5 Process decomposition for gear mechanisms ...........21
2.6 Innovative design of mechanisms .....................22
2.7 Summary .............................................25
Chapter 3 Kinematic fractionation......................26
3.1 Introduction........................................26
3.2 Structural fractionation ............................28
3.3 Basic concepts of kinematic fractionation ...........31
3.4 Matrix-based approach to identify KUs ...............36
3.5 Graph-based approach to identify KUs ................39
3.6 Typology of GKCs ....................................43
3.7 Summary .............................................46
Chapter 4 Topological analysis of gear mechanisms ......49
4.1 Introduction........................................49
4.2 Kinematic dependency in a KU ........................51
4.3 Topological requirements of a gear mechanism ........55
4.4 Procedures for topological analysis .................58
4.5 Examples ............................................64
4.6 One-dof 6-link gear mechanisms......................69
4.7 Summary .............................................80
Chapter 5 Kinematic analysis of gear mechanisms ........81
5.1 Introduction........................................81
5.2 Types of common linkage .............................83
5.3 Internal conversion .................................86
5.4 Global propagation ..................................93
5.5 An application to automatic transmission mechanism ...99
5.6 Summary ............................................103
Chapter 6 Epilogue ....................................105
6.1 Conclusion .........................................105
6.2 Future works .......................................107
References .............................................109

[1] Kusiak, A. and Larson, N., 1995, “Decomposition and representation Methods in Mechanical Design,” ASME Journal of Mechanical Design, 117, pp. 17-24.
[2] Cross, N., 1989, Engineering Design Methods, John Wiley & Sons, Inc.
[3] Suh, N., 1995, “Axiomatic Design of Mechanical Systems,” ASME Journal of Mechanical Design, 117, pp. 2-10.
[4] Kusiak, A. and Szczerbicki, E., 1992, “A Formal Approach to Specifications in Conceptual Design,” ASME Journal of Mechanical Design, 114, pp. 659-665.
[5] Kusiak, A. and Wang, J., 1993, “Decomposition of the Design Process,” ASME Journal of Mechanical Design, 115, pp. 687-695.
[6] Wagner, T. C. and Papalambros, P. Y., 1993, “A General Framework for Decomposition Analysis in Optimal Design,” Proc. ASME 19th Design Automation Conference, pp. 315-325.
[7] Azarm, S., and Li, W. C., 1989, “Multi-Level Design Optimization Using Global Monotonicity Analysis,” Journal of Mechanisms, Transmissions, and Automation in Design, 111, pp. 259-263.
[8] Allen, K. R. and Carlson-Skalak, S., 1998, “Defining Product Architecture During Conceptual Design,” Proc. ASME 1998 Design Engineering Technical Conferences, Paper No. DETC98/DTM-5650.
[9] Stone, R. B., Wood, K. L. and Crawford, R. H., 1998, “A Heuristic Method to Identify Modules from a Functional Description of A Product,” Proc. ASME 1998 Design Engineering Technical Conferences, Paper No. DETC98/DTM-5642.
[10] Zamirowski, E. J. and Otto, K. N., 1999, “Identifying Product Portfolio Architecture Modularity Using Function and Variety Heuristics,” Proc. ASME 1999 Design Engineering Technical Conferences, Paper No. DETC99/DTM-8760.
[11] Tsai, L. W., 1999, Robot Analysis, John Wiley & Sons, Inc.
[12] Benhabib, B., Cohen, R., Lipton, M. G. and Dai, M. Q., 1990, “Design of a rotary-joint-based modular robot,” Proc. ASME 1990 Design Engineering Technical Conferences, DE v26, pp. 239-243.
[13] Ambrose, R. O. and Tesar, D., 1992, “Conceptual Design of a Modular Robot,” Proc. ASME 1992 Design Engineering Technical Conferences, DE v48, pp. 41-48.
[14] Cohen, R., Lipton, M. G., and Dai, M. Q., 1992, “Design of a rotary-joint-based modular robot,” ASME Journal of Mechanical Design, 114, pp. 117-125.
[15] Buchsbaum, F. and Freudenstein, F., 1970, “Synthesis of Kinematic Structure of Geared Kinematic Chains and other Mechanisms,” Journal of Mechanisms, 5, pp. 357-392.
[16] Freudenstein, F., 1971, “An Application of Boolean Algebra to The Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, 93, Series B, pp. 176-182.
[17] Ravisankar, R., and Mruthyunjaya, T. S., 1985, “Computerized Synthesis of The Structure of Geared Kinematic Chains,” Mechanism and Machine Theory, 20(5), pp. 367-387.
[18] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to The Topological Synthesis of Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 109(3), pp. 329-336.
[19] Tsai, L. W. and Lin, C. C., 1989, “The Creation of Nonfractionated Two-Degree-of-Freedom Epicyclic Gear Trains,” ASME Journal of Mechanical Design, 111, pp. 524-529.
[20] Kim, J. T., and Kwak, B. M., 1990, “Application of Edge Permutation Group to Structural Synthesis of Epicyclic Gear Trains,” Mechanism and Machine Theory, 25(5), pp. 563-574.
[21] Hsu, C. H., 1992, “An Application of Generalized Kinamatic Chains to The Structural Synthesis of Non-fractionated Epicyclic Gear Trains,” Proceedings of the 22nd Biennial ASME Mechanisms Conference, Scottsdale, Arizona, DE-Vol. 46, pp. 451-458.
[22] Hsu, C. H., 1994, “On the Structural Synthesis and Kinematic Design of Multi-DOF planetary Gear Trains,” National Science Council Report: NSC 83-0401-E110-032. (in Chinese)
[23] Chen, D. Z. and Liu, C. P., 1999, “A Hierarchical Decomposition Scheme for the Topological Synthesis of Articulated Gear Mechanisms,” ASME Journal of Mechanical Design, 121, pp. 256-263.
[24] Chen, D. Z. and Shiue, S. C., 1998, “Topological Synthesis of Geared Robotic Mechanism,” ASME Journal of Mechanical Design, 120, pp. 230-239.
[25] Chen, D. Z. and Yao, K. L., 2000, “ Topological Synthesis of Compound Geared Differential Mechanisms” ASME Journal of Mechanical Design, 122,
[26] Dahmus, J. B., Gonzalez-Zugasti, J. P. and Otto K. N, 2000, “Modular Product Architecture,” Proc. ASME 2000 Design Engineering Technical Conferences, Paper No. DETC2000/DTM-14565.
[27] Newcomb, N. B., Bras. B. and Rosen, D. W., 1998, “Implication of Modularity on Product Design for the Life Cycle,” ASME Journal of Mechanical Design, 120, pp. 483-491.
[28] Kota, S. and Lee, C. L., 1990, “A Functional Framework for Hydraulic Systems Using Abstraction/Decomposition Hierarchies,” Proc. ASME 1990 International Computers in Engineering Conference and Exposition, pp. 327-340.
[29] Kirschman C. F. and Fadel, G. M., 1998, “Classifying Functions for Mechanical Design,” ASME Journal of Mechanical Design, 120, pp. 475-482.
[30] Krishnamachari, R. S. and Papalambros, P. Y., 1997, “Hierarchical Decomposition Synthesis in Optimal Systems Design,” ASME Journal of Mechanical Design, 117, pp. 17-24.
[31] Ulrich, K. T. and Eppinger, S. D., 1995, Product Design and Development, McGraw-Hill, NY.
[32] Lefever, D. D. and Wood, K. L., 1996, “Design for Assembly Techniques in Reverse Engineering and Redesign,” Proc. ASME 1996 Design Engineering Technical Conferences, Paper No. 96-DETC/DTM-1507.
[33] Yan, H. S., 1992, “A Methodology for Creative Mechanism Design,” Mechanism and Machine Theory, 27(3), pp. 235-242.
[34] Tsai, L. W., 1988, “The Kinematics of Spatial Robotic Bevel-Gear Trains,” IEEE Journal of Robotics and Automation, 4(2), pp. 150-155.
[35] Chang S. L., and Tsai, L. W., 1990, “Topological Synthesis of Articulated Gear Mechanisms,” IEEE Trans. On Robotics and Automation, 6(1), pp. 97-103.
[36] Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, 7, pp. 263-275.
[37] Uicker, J. J., Jr., and Raicu, A., 1975, “A Method for the Identification and Recognition of Equivalence of Kinematic Chains,” Mechanism and Machine Theory, 10, pp. 375-383.
[38] Erdman, A. G. and Sandor, G. N., 1991, Mechanism Design: Analysis and Synthesis, Vol. 1, Prentice Hall, Eaglewood Cliffs, NJ.
[39] Olson, D. G., Erdman, A. G. and Riley, D. R., 1991, “Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains,” ASME Journal of Mechanical Design, 113, pp. 10-16.
[40] Hsu, C. H. and Lin, Y. L., 1994, "Automatic Analysis of the Redundant Gears in Planetary Gear Trains," International Journal of Vehicle Design, 15(5), pp. 402-415.
[41] Davies, T. H., 1968, “An Extension of Manolescu’s Classification of Planar Kinematic Chains and Mechanisms of mobility M ³ 1, Using Graph Theory,” Journal of Mechanisms, 3, pp. 87-199.
[42] Martin, G. H., 1982, Kinematics and Dynamics of Machines, 2nd ed., McGraw-Hill, NY.
[43] Waldron, K. J. and Kinzel, G. L., 1999, Kinematics, Dynamics, and Design of Machinery, John Wiley and Sons, NY.
[44] Chatterjee, G., and Tsai, L. W., 1996, “Computer-Aided Sketching of Epicyclic-Type Automatic Transmission of Gear Trains,” ASME Journal of Mechanical Design, 118, pp. 405-411.
[45] Hsieh, H. I. and Tsai, L. W., 1996, “Kinematic Analysis of Epicyclic Type Transmission Mechanisms Using the Concept of Fundamental Geared Entities,” ASME Journal of Mechanical Design, 118(2), pp. 294-299.
[46] Chen, D. Z., 1998, “Kinematic Analysis of Geared Robot Manipulators by the Concept of Structural Decomposition,” Mechanism and Machine Theory, 33(7), pp. 975-986.
[47] Liu, C. P. and Chen, D. Z., 2000, “On the Embedded Kinematic Fractionation of Epicyclic Gear Trains,” ASME Journal of Mechanical Design, 122, 479-483.
[48] Tsai, L. W., Schultz. G. and Higuchi, N., 2000, “A Novel Parallel Hybrid Transmission,” Proc. ASME 2000 Design Engineering Technical Conferences, Paper No. DETC2000/MECH-14173.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top