跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐榮輝
論文名稱:預混式火焰現象觀察與氮氧化物生成之研究
指導教授:馬小康馬小康引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:120
中文關鍵詞:氮氧化物
相關次數:
  • 被引用被引用:3
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對預混式火焰現象與氮氧化物生成之研究。除了在實驗室建立相關實驗設備外,並將實驗之火焰溫度場、氮氧化物排放情形、燃燒效率之研究、及火焰結構現象圖,做詳實的實驗量測與記錄,研究之主要內容包括:
(一)由二個不同管徑燃燒器(D=12mm與D=24mm)、改變當量值的大小、量測高度的不同,在無外在擾動因素下,探討火焰結構與流場跟出口流速變化之關係。
(二)藉由管徑大小的改變,可觀察火焰顏色的變化,並分析熱流場中的化合物成分,以及探討溫度場和氮氧化物排放的關係,另外針對燃燒效率探討氮氧化物排放的情形。
(三)利用外加空氣流量之概念,來達成氮氧化物排放減量的目的,在燃燒器的外圍噴入空氣,來觀測火焰的變化,並觀察燃燒所生成的化合物之濃度,並且分析各化合物的排放情形,以求得最佳的燃燒效率。
The study in accordance with premixed flame phenomenon and product of nitrogen oxide. In addition to establish correlative equipment in our laboratory, we must kept records of experiment. The results we did experiment include flame temperature profile, emission of nitrogen oxide, the research of combustion efficiency, and the structure of flames. We analyze the results and improve low NOx burner. Our primary studies are as follows:
(1) According to two different pipe diameter burners(D=12mm & D=
24mm), we changed equivalent ratio. With no external turbulent factor, we discuss structure of flames with change of outlet stream velocity.
(2) To take advantage of changing pipe size, we could observe variation
of flame color. Analyzing chemical composition in thermal fluid field and discussing temperature with product of nitrogen oxide. Besides, we should confer with combustion efficiency and discuss about NOx emission。
(3) Making use of the concept of adding outer air, to achieve the purpose
of reducing NOx emission. Spraying air at the outer of burner, we observe flames and record concentration of chemical composition. Analyzing the emitting condition of chemical composition and obtaining the best combustion efficiency.
目 錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VI
符號說明 XIII
第一章導論……………………………………………………………1
1.1 研究動機……………………………………………………1
1.2 研究目的……………………………………………………2
第二章文獻回顧………………………………………………………4
2.1 火焰特性概述………………………………………………4
2.1.1 火焰的形狀…………………………………………4
2.1.2 火焰的穩定性………………………………………5
2.2 氮氧化物的生成機構………………………………………5
2.2.1 熱氮氧化物…………………………………………6
2.2.2 迅生氮氧化物………………………………………7
2.2.3 燃料氮氧化物………………………………………9
2.2.4 NO 之轉變…………………………………………12
2.2.5 N2的形成路徑………………………………………13
2.3 火焰傳播速度………………………………………………14
2.3.1化學參數對火焰速度之效應………………………16
2.3.2 物理參數對火焰速度之效應………………………17
2.4 火焰溫度……………………………………………………18
2.4.1 絕熱火焰溫度………………………………………18
2.4.2 內層火焰溫度………………………………………19
2.5 低氮氧化物燃燒器…………………………………………19
2.5.1 CE及MHI之設計…………………………………20
2.5.2 Babcock、Wilcox和Babcock-Hitachi之設計……21
2.5.3 Foster Wheeler和IHI之設計………………………22
2.5.4 Kawasaki之設計……………………………………23
2.5.5 分布式混合燃燒器…………………………………24
2.5.6 Steinmuller之設計…………………………………25
2.5.7 Riley Stoker…………………………………………26
2.5.8 近年低氮氧化物發展之趨勢………………………26
第三章實驗設備及步驟………………………………………………28
3.1 燃料與空氣混合比之計算…………………………………28
3.2 實驗設備……………………………………………………29
3.2.1 燃燒器系統…………………………………………30
3.2.2 燃料輸送系統………………………………………30
3.2.3 量測系統……………………………………………32
3.2.4 其他設備……………………………………………32
3.3 實驗步驟……………………………………………………33
3.3.1 實驗前之準備………………………………………33
3.3.2 火焰溫度場之量測及現象觀察……………………34
3.3.3 氮氧化物之量測與火焰行為影響的現象觀察……35
3.3.4 一次空氣對燃燒行為的火焰觀察…………………36
3.3.5 一次空氣對火焰溫度量測與現象觀察……………37
3.3.6 一次空氣對氮氧化物之量測與現象觀察…………37
第四章實驗結果與討論………………………………………………39
4.1 溫度與流場之探討…………………………………………39
4.2 氮氧化物排放之探討………………………………………42
4.3 燃燒效率之探討……………………………………………45
4.4 溫度與氮氧化物排放之關係………………………………48
4.5 氮氧化物排放與燃燒效率之關係…………………………50
第五章結論與建議……………………………………………………54
5.1 結論…………………………………………………………54
5.2 建議…………………………………………………………58
參考文獻………………………………………………………………60
附圖……………………………………………………………………67
1.B. Bedat and R. K. Cheng, “Effect of Buoyancy on Premixed Flame Stabilization”, Combustion and Flame, Vol.107, PP.13-26, (1996).
2.Y. H. Song and W. Bartok, “Rate Controlling Reactions in Fixed Nitrogen Conversion to N2 ”, 19th Symposium [International] on Combustion/ The Combustion Institute, PP.1291-1299, (1982).
3.K. J. Lim, “Environmental Assessment of Utility Boiler Combustion Modification NOx Controls”, Vol.1 Technical Results, EPA-600/7-80-075a, (1980).
4.C. T. Bowman, “Kinetics of Nitric Oxide Formation in Combustion Processes”, 14th Symposium [International] on Combustion/ The Combustion Institute, PP.729-738, (1972).
5.A. F. Sarofim and J. H. Pohl, “Kinetics of Nitric Oxide Formation in Premixed Laminar Flames”, 14th Symposium [International] on Combustion/ The Combustion Institute, PP.739-754, (1973).
6.G. Tsatsaronis, “Prediction of Propagation Laminar Flames in Methane, Oxygen, Nitrogen Mixture”, Combustion and Flame, Vol.33, PP.217-237, (1978).
7.C. T. Bowman, “Kinetics of Pollutant Formation and Destruction in Combustion”, Combustion and Flame, Vol.33, PP.113-126, (1978).
8.C. P. Fenimore, “Formation of Nitric Oxide in Premixed Hydrocarbon Flames”, 13th Symposium [International] on Combustion/ The Combustion Institute, PP.373-380, (1971).
9.F. Bachmaier, K. H. Eberius and T. Just, “The Formation and Destruction of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon-Air Flame at One Atmosphere”, Combustion Science and Technology, Vol.7, PP.77, (1973).
10.B. S. Haynes, D. Iverach and N. Y. Kirov, “The Behavier of Nitrogen Species in Fuel Rich Hydrocarbon Flames”, 15th Symposium [International] on Combustion/ The Combustion Institute, PP.1103-1112, (1974).
11.J. O. Warnatz, “Calculation of the structure of Laminar Flat Flame II: Flame velocity and Structure of Freely Propagaty Hydrogen-Oxygen and Hydrogen-Air-Flame”, Berichte der Bunsen-Gesellschaft fur Physikalische Chemie, Vol.82, PP.643-649, (1992).
12.C. Morley, “The Formation and Destruction of Hydrogen Cyanide from Atmospheric and Fuel Nitrogen in Rich Atmospheric-Pressure Flames”, Combustion and Flame, Vol.27, PP.189-204, (1976).
13.T. Takagi, M. Ogasawara, K. Fuji and M. Daizo, “A Study of Nitric Oxide Formation in Turbulent Diffusion Flames”, 15th Symposium [International] on Combustion/ The Combustion Institute, PP.1051, (1975).
14.J. F. Kee, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames”. Sandia Rep., Sand.85-8240, (1985).
15.J. A. Miller and C. T. Bowman, “Mechanism and Modeling of Nitrogen Chemistry in Combustion”, Progress in Energy and Combustion Science, Vol.15, PP.287-338, (1989).
16.A. F. Sarofim, G. C. Williams, M. Modell and S. M. Slater, “Conversion of Fuel Nitrogen to Nitric Oxide in Premixed and Diffusion Flames”, AICHE Symposium Ser. NO.148, Vol.71, PP. 51-61, (1975).
17.W. Bartok, V. S. Engleman, R. Goldstein and E. G. del Valle, “Basic Kinetic studies and Modeling of Nitrogen Oxide Formation in Combustion Processes”, AICHE Symposium Ser. NO.126, Vol.68 PP.30, (1972).
18.G. De Soete, “Overall Kinetic of Nitric Oxide Formation in flames”, Flame Chemistry Panel Meeting of the IFRF, Ijmuiden, (1974).
19.M. E. Branch, R. J. Kee and J. A. Miller, “A Theoretical Investigation of Mixing Effects in the Selective Reduction of Nitric Oxide by Ammonia”, Combustion Science and Technology, Vol.29, PP.147-165, (1982).
20.C. K. Wu and C. K. Law, “On the Determination of Laminar Flame Speeds From Stretched Flames,” 20th Symposium [International] on Combustion. The Combustion institute, PP.1941-1949, (1984).
21.B. Lewis and G. Von Elbe, “Combustion Flames and Explosions of Gases,” 2nd ed. Academic Press, New York, PP.381, (1961).
22.F. A. Williams, “A Review of Some Theoretical Considerations of Turbulent Flame Structure,” In AGARD Conference Proceedings Vol.164, PP.1-25, (1975).
23.L. H. Tien and M. Matalon, “On the Burning Velocity of Stretched Flames”, Combustion and Flame Vol.84, PP.238-248, (1991).
24.M. Matalon, and B. J. Matkowsky, “Flames as Gas Dynamic Discontinuities”, J. Fluid Mech. Vol.124, PP.239-259, (1982).
25.C. K. Law, “ Dynamics of Stretched Flames”, 22nd Symposium [International] on Combustion/ The Combustion Institute, PP.1381-1402, (1988).
26.S. H. Chung and C. K. Law, “Analysis of Some Nonlinear Premixed Flame Phenomena,” Combustion and Flame, Vol.75, PP.309-323, (1989).
27.R. J. Kee, J. A. Miller, G. H. Evans and G. Dixon-Lewis, “A Computational Methane-Air Flames,” 22nd Symposium [International] on Combustion/ The Combustion Institute, PP. 1479-1494, (1988).
28.J. J. Sangiovanni and M. Labowsky, “Burning Times of Linear Fuel Droplet Arrays: A Comparison of Experiment and Theory”, Combustion and Flame, Vol.47, PP.15-21, (1982)
29.T. W. Reynold and M. Gerstein, “Inflence of Molecular Structure of Hydrocarbons on Rate of Flame Propagation”, 3rd Symposium [International] on Combustion/ The Combustion Institute, PP.190-194, (1949).
30.B. Lewis, “Discussion Selected Combustion Problems”, AGARD, PP.177, (1954).
31.U. C. Müller, M. Bolling, and N. Petres, “Approximation for Burning Velocities and Markstein Numbers for Lean Hydrocarbon and Methanol Flames”, Combustion and Flame, Vol.108, PP.349-356, (1997).
32.N. Peters, and F. A. Williams, “The Asymptotic Structure of Stoichiometric Methane-Air Flames”, Combustion and Flame Vol.68, PP.185-207, (1987).
33.K. Seshadri, and J. Göttgens, “Structure of the Oxidation Layer for Stoichiometric and Lean Methane-Air Flames”, Reduced Kinetic Mechanisms and Asymptotic Approximations For Methane-Air Flames (M. D. Smooke, Ed.), Lecture Notes in Physics, Springer-Verlag, Vol.384, PP.111-133, (1991).
34.王興華 & 翁國鈞“液態燃料預混火焰之實驗分析與數值模擬”國立台灣大學機械工程學研究所博士論文(1998)
35.顏瑞和 & 周志能 “分段燃燒氮氧化物控制”國立台灣大學機械工程學研究所碩士論文. (1992)
36.馬小康 & 謝德銘 “燃燒爐內分段燃燒以降低氮氧化物生成量之研究”國立台灣大學機械工程學研究所碩士論文.(1992)
37.馬小康 & 潘坤振 “燃燒爐內降低氮氧化物生成量之研究” 國立台灣大學機械工程學研究所碩士論文.(1993)
38.馬小康 & 蔡景昭 “分段燃燒及燃氣再循環對氮氧化物生成之影響”國立台灣大學機械工程學研究所碩士論文.(1994)
39.S. C. Li and F. A. Williams, “A Simplified, Fundamentally Based Method for Calculating NOx Emissions in Lean Premixed Combustors”, Combustion and Flame Vol.119, PP.367-373, (1999).
40.J. R. Creighton, “Dependence of CO Emissions on the Rate of Product Cooling”, Combustion and Flame Vol.123, PP.402-411, (2000).
41.D. D. Thomsen and N. M. Laurendeau, “LIF Measurements and Modeling of Nitric Oxide Concentration in Atmospheric Counter-flow Premixed Flames”, Combustion and Flame Vol.124, PP.350-369, (2001).
42.H. K. Ma, and D.M. Hsieh, “The Reduction of Thermal Nitrogen Oxides (NOx) Emission Using Staged Combustion In-Furnace”, Journal of Thermal Science. Vol.2, PP.61-69, (1993).
43.H. K. Ma, C. C. Tsai and Y. C. Liang, “The Effect of Flue Gas Recirculation on NOx Formation in a stage Burner”, selected for publication in a set of Books published by Taylor & Francis Publishing, (1996).
44.H. K. Ma, and D. M. Hsieh, “The Experimental Study of NOx Reduction Using Staged Combustion In-Furnace”, The Proceedings of Joint Conference of 3rd international Symposium on Heat Transfer and 5th International Symposium on Transport Phenomena, (1992).
45.H. K. Ma and D. M. Hsieh, “The Experimental Study on Emission of Nitrogen Oxides in a 70,000 Btu/hr Gas-Fired Furnace”, International Symposium on Emission Reduction and Energy Conservation, (1992).
46.H. K. Ma and K. C. Pan, “Reexamination of Fuel-NO Reduction in A Gas-Fired Furnace”, Impact of the clean Air Amendment Act of American Flame Research Committee International Symposium, (1993).
47.R. R. Martin, “The Effect of Various Operation Parameters on NOx Formation for International Recieculation Burners”, American flame Research Foundation Fall International Symposium, (1933).
48.C. F. Gottschlich, “Ultra Low NOx Wall-Mounted Burners”, Selas Corportion of America, (1993).
49.J. A. Nicholson, “Low NOx Natural Gas burner Development at ABB”, ABBower Plant Laboratories Combustion Engineering Inc., Windsor, CT. USA, (1993).
50.G. J. P., and N. J. Zhan, “NOx Emission and Major species Concentration in Partially Premixed Laminar Methane/Air Co-flow jet Flames”, Combustion and Flame, Vol.105, PP.414-427, (1996).
51.Q. V. Nguyen, R.W. Dibble, C. D. Carter, G.J. Ficchtner, and R. S. Barlow, “Raman-LIF Measurements of Temperature, Major Species, OH, and NO in a Methane-Air Bunsen Flame”, Combustion and Flame Vol.105, PP.499-510, (1996).
52.C. P. Burgess and C. J. Lawn, “The Premixture Model of Turbulent Burning to Describe Lifted Jet Flames ”, Combustion and Flame Vol.119, PP.95-108, (1999).
53.X. J. Gu, M. Z. Haq, M. Lawes and R. Woolley, “Laminar Burning Velocity and Markstein Lengths of Methane—Air Mixtures”, Combustion and Flame Vol.119, PP.95-108, (1999).
54.D. B. Spading, “A Novel Finite-Difference Formulation for Differential Expression Involving Both First and Second Derivatives”, International Journal Numerical Methods Engineering, Vol.4, PP.551, (1972).
55.S. L. Chung, and J. L. Katz, “The Counterflow Diffusion Flame Burner: A New Tool for the Study of the Nucleation of Refractor Compounds”, Combustion and Flame. Vol.61, PP.271-284, (1985).
56.X. Qin, H. Kobayashi and T. Niioka, “Laminar burning velocity of hydrogen-air premixed Flames at elevated pressure”, Experimental Thermal and Fluid Science, Vol.21, PP.28-63, (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top